
AD-A CO 881 AIR FORCE INST OF TECH
WRIGHT-PATTERSON F OH -COETC F/ 9/2

JOVIAL (.173) TO ADA TRANSLATOR SYSTEM.(VF OH SCO ECF /

DEC 80 R L BROZOVIC
UNCLASSIFIED AFIT/GCS/EE/8OD-5

l',hEEEE/hhhEIEEEEIIIEIIIIEE
I IhIIhhhIhIhl
EIIIIEIIIIEEE-
EEIIIIIIEEEEE
IIIIIIIEEEEE

.)7; 13P'r1a~ ad ;Ij

DEPARTMENT OF THE AIR FORCE A
AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

81 6 30 il

JOVIAL(J73) TO ADA

TRANSLATOR SYSTEM

THESIS

AFIT/GCS/EE/80D-5 Richard L. Brozovic
Capt USAF

________1Ofl (Su laltd.r J

AFIT/GCS/EF/8p- 5

-- ,/JOVIAL(J73) TO ADA

/1 TRANSLATOR SYSTEMI

/1

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air Training Command

in Partial Fulfillment of the

Requirements for tne Degree of

Master of Science9

tyt

by

Richard L.) Brozovic, B.S.

Capt USAF

Graduate Computer Systems

December 1980

Approved for public release; distribution unlimited.

* --.

Preface

I have been interested in programming languages since

my first courses in computer science at the undergraduate

level. With the introduction of Ada, I immediately became

interested in the future of Ada and the development of

software tools to support the Ada environment. The dusic;n

and development of a system to translate Jovial(J73) into

Ada provided me with an excellent opportunity to exercisc

some of the compiler techniques that I have studied azid a.,

explore some of the concepts of language transltio). L

also had the opportunity to learn anotihr languac, J73, L:i,:

become involved with the identification of deficiencits ii

the still developing compiler. All considcr.:d, I enjoyed.

the project immensely.

During the design and development of this tran latio,

system, I received help from many sources. The Avioni .

Laboratory of the Air Force Wright Aeronautical Laboratori ,

(AFWAL/AA) sponsored this project and severd people dcserve

my thanks. Major Dan Burton was the project sponsor and

provided considerable guidance and information regarding

J73. Mr Mike Burlakoff was also of great help in learning

J73. Many other people within the Avionics Laboratory also

provided help from time to time. The sponsorship and

support of the AFWAL/AA were greatly appreciated.

I would also like to thank my thesis advisor, Lt Col

Jim Rutledge, who provided technical support on Ada. :%ajor

ii

Mike Wirth also deserves my thanks for his assistance in the

areas of formal language theory. Thanks also goes out t,

many other AFIT instructors and fellow students who provided

insight and guidance during the design and development of

the project.

Finally, there are two other persons that deserve i

special thanks for their part in my success. Ny wife Pat

shared the good times with me and was there to support 1ic

through the hard times. Her encouragement was invaluable

during my entire time at AFIT. The other person of :rLai

importance to me is my son, Jason. Altn-_h he did not

understand why I could not always give him Lhe attention hc

wanted, when we did spend time to~c ther, we en oyJ life

9 greatly.

iii

Contents9

Preface

List of Figures v .

List of Tables

Abstract

1. Introduction

II. Requirements Definition

III. System Analysis

LR Parser Generator
Decisions

IV. System Software Development. 11

Parser Module 11
Parser Table Generation 12

* Parser Table Translation 16
Parser Implementation
Semantic Processing

Translation Mlodule
Prettyprint Module
Conclusion

V. Results and Recommendations 37

bibliography 4!

Appendices

A LR: Automatic Parser Gene:.ator and L11(1) Parsur 46

B J73 Language Productions 52

C System Maintenance Guide 72

D JATS User Guide 5

E Example Programs 88

iv

List of Figures

Figure Page

1 Assignment Statement

2 Partial Parse Tree 19

3 <assignment-stmt> Node 20

4 Assignment Statement Production 24

5 Declaration of Item Type25

6 Translation of <assignment-stmt> 29

7 Translation of <label>30

8 Translation of <program-body> 32

9 Vocabulary Data Structure47

10 Tri-ition Data Structure 48

11 Reduction Data Structure49

12 System Structure Chart75

13 System Structure Chart76

14 System Structure Chart77

v

List of Taoles

Table Pa c

I Grammar Discrepancies15

II Type Classes 24

III Changes to Dimensioned Variables of LRS 51

IV System Errors 8Z

vi

AFIT/GCS/EE/80D-5

Abstract

t,.
In recent years the Air Force has developed a standard

programming language, J73, for use in embedded computer

systems. Now that the Air Force has a considerable

investment in systems that are currently being developed

with J73, the Department of Defense has selected a high

order programming language, Ada, that will become the

standard for programming embedded computer systems

throughout the Department of Defense. Also under

development is the definition of a support environment for

Ada. One of the tools of this support environment should be

a translator that will produce Ada source programs from:. 173

source programs (Ref 4).

The subject of this research project was the design and

development of a Jovial(J73) to Ada Translator System7

(JATS). The resulting system accepts J73 programs and

produces equivalent Ada programs to t,,e extent possible

while identifying segments of J73 code that were not

translated. This project made use of language parsing

techniques and various data structures to support the

translation process. Several problem areas are identified

with possible solutions. The translator system should be a

useful tool in the transition from J73 to Ada.

vii

I Introduction

In recent years the Air Force and Department of Defensc

(DoD) have initiated efforts to adopt standard programmin.

languages in order to reduce the cost of softwarc•

development for embedded computer systems. EmbedJC~i

computer systems are an integral part of a larger weapoi

system, such as a flight control computer in an aircrift.

Some of these embedded systems are so unique and specialize,!

that none of the programming languages approved for use ii

Air Force systems have been appropriate for progrim-in

these systems. As a result, new programming languae na'.',

been introduced which compounds the problem- of softrc

development. In an effort to reduce softare de'c~opr.

costs the Air Force has developed J73 which is a derivatix'

of Jovial, Jules' Own Version of the Inter~iatioial Algebri>'

Language (Ref 1:39). As a result, the Air Force has -i

considerable investment in systems that art currently unc,-

development with J73.

In a somewhat later effort, the DoD also initiated the

development of a DoD standard high order language for

programming embedded computer systems. In April 1979, DoD

selected Ada as the language and in July 1980 released a

proposed standard for the language. In the near future, Ada

is supposed to replace J73 on the list of approve,

programming languages for embedded computer systens

(Ref 13). Also currently under design is the definition of

a support environment for Ada which should include,

other software tools, translators for present language ;

(Ref 4).

Although direct translation of existing software

not produce production quality software, a translator 'hi '

performs the bulk of the translation can still ne a valu3P>

aid in the transition to a ne,, programming langu.ge. It '2 i

save valuable time by reducina tiie ar-ount i 1 n ,i:i

translation that is required and identifving those a!-V 1 '

that do require manual translation. The Avio:lics Laborut.r-.

of the Air Force Wright Aeronautical Labortrie (\L'i'

has a requirement for a J70 to Ad,:i tr-tnslittan s.st'n whi

should directly tratislate, to the extent , pos3sile, '-

programs into an equivalent Ada program and identifu, to,

seg ments of code that were not fully tra:islited.

The purpose of this research p -jcct was to desLn lil

develop a translator systeln that ;oud produc, eq,.vclc:

Ada programs from J73 programs. The system, called JAmS f)

Jovial(J73) to Ada Translation Syste::I, is a soft,qre nrudlu,,

which was implemented on the AFdAL/AA DecSyste;i-ID andJ

produces Ada text files.

The majority of the work in producing JATS was in tihe

software design and development. There are three functional

units of JATS: (1) parser module, (2) translation module,

and (3) prettyprint module. The parser module processes te

input language and constructs a parse tree, an internial

2

representation, of the program. Tnu transla..on i

manipulates the parse tree to construct an eqiivale.n d

program. The prettyprint module uses tne results of L

translation to produce a formatted text file.

The parser was developed fro? a sot-are pacrn L fnrI

Lawrence Livermore National Laboratory (LLL) (KC§ 12).

This package allows the user to develo) a-

parser from a specification of the languoj s,'i:: .

which tfte user can develop a language processor. :-c< :><

project, the parser is used to constrcr .,

tree structure representing tao inpoLt prog'

The translation routines process tL , L' P 1 " I- 'I.

produce a modified tree t'it represe;ts an i: ' " LV

program. Finally, thc prettyPrin ru LiK in P....

formatted text file usin- 1C so' t'- ,-:

conventions in the Ada reference ; a xl is

The remainder of this docurei desr , c 'I

parts of the design and developcatc' J. fi. C1:).r ic

defines the requirements specified by taL rese rca pro 7

sponsor, AFWAL/AA. Chapter III presents tie sy'su:,,..

analysis that was performed prior to developc.e:t. C 11 a L

IV describes the software developrcnt. Cnapter V prescnts

the results of this project and recommendations for furt'htr

work. Several appendices provide additional information for

the interested reader. Appendix A briefly describes tit-,

LLNL software package. Appendix B defines the synt: of tifc

3

j73 language and identifies those language productions that

have been translated. Appendix C contains a description of

JATS and was designed to be a system maintenance aid.

Appendix D is a user's guide and Appendix E is an example

J73 program and its translated Ada version.

In the remaining discussions, for the purpose of

clarity, reserved words and specific data names will be

capitalized and will be discernable from context.

Nonspecific elements of the J73 language will be enclosed in

angle brackets. For example, <name> represents any valid

J73 identifier. The elements of J73 correspond, as closely

as possible, to the definition of t-= language il

MIL-STD-1 589A.

4

II Requirements Definitioi

In recent years, the high costs of software developmi:t

have increased the importance of the use of softw i.r

development tools. Currently, the USAF has a considera' t

investment in major software systems that arc bein

developed with J73. With the introduction of Ada, which i.,

supposed to replace J73 as the USAF's approved prorJ:.li:

language for embedded computer systems, it has xo:.

evident that an automated translation systen fro7: 27. t.

is needed.

The Air Force Wright Aeronaut ical Laboralrsritcs, ',:-

Laboratory has stated a requirecnL for t h l d jI:& • ,,

such a system. Although thl general rQii.L : . :

translation is rather straightfor::rJ, it is no si>'> t .

As pointed out in the development oi the Autops , projc't

the University of Southern California, "th erc rc t

constraints guiding the development of a useful translatio:n

system:

1. A translation system must do almost all of tnii
work.

2. No translation system. can do all of the wor2"
(Ref 2:118).

Invariably there will be sections of code which cannot bQ

directly translated because of unique system dependencies.

In such cases it is very difficult to insure the correctness

of the translation and the user must perform the translation

5

manua I ly.

The general requirement can be divided into thr ,

specific parts. First, the translation system should accL,

any correct J73 program and produce, to the extent possib1 ,

an equivalent Ada program. The assumption that the input i-

syntactically correct will allow for the eliminati.ion Ot

lengthy error detection and recovery routines. Secondly,

when a direct translation is not possible, the translator

should identify the untranslated code to allo,: tiu user t..

perform a manual translation. Thirily, to 1 uIS

portability of the translation syste-, s d :

conform to :,1IL-STD-1569.', which defines tk: s'nt:A

semantics of J7J.

Since J73 is still undergoing changes, th, snt-

should be designed to allow modification of the syste. -

meet th changing language environm2nt. Since the scope o

this research project was limited to translatin, a subsu"

J73, the systeu snould also be designed to facilitate t: 1

addition of the remaining translation routines to co-mplet.

the translation system.

In summary, JATS should translate J73 source progrd:.s

into Ada source programs, identifying those segments of code

that have not been translated. JATS should also be designed

to allow maximum portability, meet changing langauoc

requirements, and allow completion of the translation

process.

6

. ' i . ., i _i_. iiI.. .

III bystem Analysis

The analysis of any large software project is

important task that should not be overlooked. One of t",

goals of any system analysis should be to identify al

software development tools that may be applicable to t:'i

project. With increased emphasis on reducin2 softwar,

development costs, the use of available software that ha0 >

been tested and implemented must be considered and ci:-

reduce the overall effort and thereforc tne costs of I

development project. This is especially iinportain il a

research project which must be limited in scopL i:1 order t

achieve a reasonable goal.

Translation of the entire J73 language was not possi 11

within the time constraints of this project. Thercfor,

subset of the J73 language was selected for translatim:.

This subset was chosen based upon the more co:mmo lv ,U

features of the language so that the results would .

applicable over as large a range as possiblu.

Although the project was limited to translating

subset of J73, the design of the system proceeded as if t jk

entire J73 language was to be translated. This will allo

the addition of the remaining translation routines wiLh

minimum impact on the rest of the system. Therefore, the

design of the front end of the translator system, tht

parser, was a critical part of the project. There are twu

general techniques used in the development of parsers. Oim

7

is the use of top-down recursivc descent parsers an_ t.

other employs table-driven bottom-up parsers. The first

technique implements the parsing algorithm as recursix-

procedures whose algorithms depend upon the language to >

processed. As a result, a general parser tor more than onL'

language cannot be developed since the parsing algorithms .

will change from one language to another. In contrast, tn-

second technique uses algorithms that are langua.,e

independent to generate and then use a set of parser tables.

Since, the tables contain the specific information about L:,L

language, the algorithms can be impclc.,-itud to ge:mr, L

parsers for any members of a given family of languages. TI L

particular family of lanouaes depends upon the algoritn:2>,

used to generate the parser. One such parser geicraltr

package is "LR: Automatic Parser Generator and LR(I) Parscr:'

designed at Lawrence Livermore National Laboratory (LL::!.)

(Ref 12).

LK Parser Generator

The LR package is a set of programs written in A:U,

standard FORTRAN 66 which have been successfully used iin

many applications. The package is currently available o:i

the Aeronautical Systems Division's Control Data Corporation

CYBER 175 computer system and has been use- in previous AFIT

research efforts. The AFWAL/AA DecSystem-10 computer syste:

can also support LR. The first program of the LR packau,

LRS, is the table generator. It is complete in itself but

... • -"r l . . i m ' i , ... - .. . ' -- ,

has two implementation dependent subroutines trIaL requir:

minor changes to implement it on the DecSystem-10. 1ih

second program, PXS, is the parser skeleton and must b

supplied with the necessary support routino to complete L;i

language processor. These required routines are the lexicdl .

processor, which recognizes the lexical elements of t;it

language, and the semantic processor, ',iich djfinus t;I

semantics of the language processing.

Since both parsing techniques require tnc le CI I <

semantic processors, the two techniques do not diffIr i

that aspect. However, since a parser generator r, :

available, the table-driven bottom-up parser ,7s chos,:l Iu

this research project.

Decisions

Since LR was available for use in tnim dev _.op,.Mt.:1'

translator system, the major decision -t,, hal to be

before development could procce-I was the ch,;ic UI ,

programming language. Since Lh was written in .N. s

FORTRAN 66, the continued use of FOTRAN; was possil)le, but

undesireable. The main reason for this was thu anticipatud

use of various data structures and recursive alorittc s

which cannot be implemented in FORTRAN. Also, one of the

goals of the Ada support environrenL is to develop the

software tools using Ada. Therefore, Ada would have been

the obvious choice. However, the lack of a compiler woul

9

have seriously restricted the development and testing): tn,

system. The next choice was J73, which was an excellent

choice for several reasons. J73 is a block structured

programming language which allows the use of structurvd

programming techniques and any system that supports J73 .*

should also be able to support the translator syste::.

Another possible reason might be the fact that the

translator could then translate itself into an Ada version.

However, this approach would not be equivalent to developing

the translator in Ada.

There was only one drawback to designing the translator

system in another language; tne parser skeleton, Pt, wais

written in FORT.A . However, this was a minor drawbac ,

since the parser skeleton was also available in a PASCAL

version as a result of an AFIT class project for th

Advanced Compiler Theory course. Since the algorithms usud

in the parser skeleton are short and straightforward, and

were already implemented in a block structured programming

language, the process of translating the parser s'eletv n

into J73 did not involve much effort.

10

IV System Software Development

The bulk of this research project was the development

of the Jovial(J73) to Ada Translation System (JATS)

software. JATS consists of three functional module,;:

(1) parser module, (2) translation module, and (3)

prettyprint module. The parser module was developed usin,

the LLNL parser generator package and produces a parse tree

of the source program. The translation module uses the

parse tree and performs a direct translation of the nodes o:

the tree. The result of the translation is a modified par.se

tree which represents an equivalent Ada proI'r&i. The

prettyprint 'Module uses the modified parse tre to h il i a

formatted text file whicl contains the Ada pror2. Ea

module of tiie system will be described in derti.

Parser Module

The parser module implenents a table-driven bottn-u i

parser designed using the LR parser iener-itor. Lk is a

language processing tool consisting of two programs. The

first program, LRS, is an automatic parser table generatr.)0r
The second program, PRS, is a parser skeleton. When thu

tables from LRS, the lexical processor, and the semantic

processor are added to PRS the result is an LR(1) parser and

language processor. The LR(1) characteristic of the

language is a design constraint of the grammar which defines

the syntactic type of the language and means that titL

11

language can be parsed from left-to-right with a lcotiahea.

requirement of one symbol. A language of this type ¢:.n bc

recognized by a deterministic pushdown automaton in linear

time (Ref 7:501). A deterministic pushdown automaton uses

stack and the knowledge of the current state and lookahea : !

symbol to decide the next course of action. The pars%-:4

tables from LRS provide the control information for tCl

finite state automaton while PRS provides the definition o.

the process. The design of the parser module involved four

major phases: (1) parser table generation, (2) parser tabVi

translation, (3) parser implementation, and (4) semantic

processing. Each of these sections will bc discussed i:i

further detail.

Parser Table Generation. LRS accepts an LP,(1) grac:::r

in a modified Backus-Naur Form and produces a gramr.:.

analysis and a set of parser tables. However, some work ws

necessary to implement LRS on the DecSvste:i-10. Dhi:

contains two subroutines that are implementation depedn;t,

INIT and CHRIND. INIT initializes the input and outpul,

files. CHRIID converts a single character storuel

left-justified in one word into an integer, the character

code, and required the use of a macro subroutine. This

macro routine is a function called ICHR. With these tw

changes, LRS was successfully running on the DecSystem-10.

Also, betore LRS would process the complete J73 grammar,

several other changes had to be made within it. Considering

the size of LRS, this was no minor task. These changes

12

involved increasing the sizes of some of the dimensionc

variables to accommodate the large grammar. These chanes

are discussed in greater detail in Appendix A.

One other change was made to enhan,. the use of LS.

In the version available at AFIT, both the grammar analysis

and the parser tables were output to the same file and tho 4
parser tables had to be copied to another file with the use

of an editor program. The grammar analysis consists ot

large amounts of data describing the parser and is usually

output to the printer while the data tables are placed into

a data file to be inserted into the parser skeleton. T-)

separate these output files, one additional outurL

subroutine was added to write the data tables to a differcni

file. A description of this subroutine is contained in

Appendix A.

The J73 grammar is input to LRS in a modifie

Backus-Naur Form, which is a convenient w..; of describino

the syntax of programming languages. Several problems vcru

encountered during this pnase of the project since a

complete LR(1) grammar was not available. After

considerable effort to rewrite the grammar fro;

MIL-STD-1589A into a form that was LR(1), an LR(1) grammar

for the executable statements of J73 was obtained fro::.

Softech Incorporated (Ref 8). However, the remaining grammar

for the declarations was not LR(1). According to Softech

Inc., they developed the J73 compiler using a top-dosn

13

him.l

recursive descent parser for the declarations an6

table-driven bottom-up parser for the statements an':

therefore did not have a complete LR(1) grammar availabiL.

However, according to the language designers at Softec..

Inc., J73 is a deterministic context free language, wh ,:..

implies (Ref 7:512) that an LR(1) grammar does exist tor t:,u

language. Rewriting the grammar was no minor task and ther

are still several places in the grammar where the translator

will not accept a syntactically correct J73 pro-rxi . 'f:e
,

resulting grammar is contained in Appendix B. The ;c te>

discrepancy is probably the complete lack of

<block-preset> definition. The deliit i : t: -

Kblock-preset> and the <table-preset) conflicted, resultiii

in a grammar that was not LK(1). The grammar for t:,

<block-preset> could have been rewritten but would haVC bckt:

a time consuming process. The <block-preset> was eliminat,!

in favor of allowing development to proceed on the remaini2

modules of the system. However, use of the <block-prst >

does not appear to be that extensive and this loss .o n

completeness ias assumed to be justified. OLher

discrepancies are concerned with some of the si.L

constraints in some of the data declarations. The proble->

was that the <formula> in some of these cases was

immediately followed by a left parenthesis while the grammar

for a subscripted variable can be a <name> followed by a

left parenthesis. For a grammar to be LR(1), the parser ha.s

to be able to decide what to do in its present state basc,.

14

upon the next token, or symbol, of tne in'ut strL.

However, with this conflict, the parser could not deci.

whether to combine the <name> and left parenthesis to

generate the subscripted variable or reduce the <name> to ,

<formula> to generate, for example, a <status-size>. Thc

specific areas that are constrained are the <status-size> i2

the declaration of a status item, the <bits-per-entry> an:

<entry-size> in the declaration of structured tables, c:(

the <repetition-count> in a <table-preset>. Again, thcs.

constraints do not appear to place a serious limitation ulo:

J73 users. These discrepancies are sum;arized in table 1.

Table I

Grammar Discrepancies

MIL-STD-1 589A Cur rent

Reference Element Definition

2.1 .1 .6 <status-size> >inteser-litera1

2.1 .2.2 (bits-per-entry> iot2er- literi l>

<functLion- c~il I >

2.1.2.4 <entry-size> <inteLer-ii tfr.',>
<name>
<function-cal I>

2.1.6 <repetition-count> <integer-literal>

2.1.6 <block-preset> Not Defined

It should also be noted that a <name> which has not yet

been defined during parsing of declarations is scanned as a

15

<name> while an undefined <name> during par5i ,

statements is scanned as a <proc-label-na. e>.

distinction was necessary in the grammar definition to .

it LR(1).

Once an LR(1) grammar for J73 was dcfined, LKS prox',:

a valid set of parser tables. The J73 0 ra:::ar that was us .

to generate these parser tables is contained in. Appendix \.

The specific contents and structure of tn, :J cs ar-.

described in Appendix A.

Parser Table Translation. Once thu pri," s.< :,

obtained from LRS, a transl~tion st: L rL:-

transform the data tables into the J73 la:,.: in ,

that was equivalent to the EOR7k'> 6t Dl

statements. The data tanIus were processed u: T.......

and produced J73 constant tio dcclaraAiws :n.

the FORTRAN 66 data structLrcs. 'hesc s ,Ltc:ns , ,

collected together as a noiu c . § c w

are separately c o:ila§1 .L-e uI ," : "

declarations. Tiit us2 o: t e co:Aw L. :>v, ,

very advantageous since to1 tables we re v-, 1i.

required about five riiinuLes of cpu time for corpilution ,

the DecSystem-10. The 373 compool moJule provied tL

parser table intorniation for the parser skeleton.

Parser Implemcnt'Ation. PRS provideJ a FORTRA.N parscr

skeleton which had to be translated into J73. This ste;p ,,,

relatively sir7ple since PR nad already been trarislated i:c.

16

PASCAL and the same data structures wer c available in-

Four subroutines make up the main parsing algori:

(1) FINDREDUCTion, (2) FIND'TRANsition, (3) DO'RED.iCfii_-,

and (4) DO'TRANsition. FIND'REDUCf uses the current "

and token to search the tables for a possible reduction.

one is found, the applicable language production i use. b

DO'REDUCT to call the semantic processor an-i r&dc -

information in the stacks accordingIy. If a recucL~v1 :

not possible fromi the current state, FIND' Tkxd se itci t .

tables for a possible transition to another .

transition i)o ss ible, DO'TA: s ck 11c car1 V

information on the appropriate stacks anU cILs 1 r 2

processor for the next t)ke in the in str .

neither a reduction nor trns tiA' is o ossi t-I S

has detected an erro- and m sL r2co ver. S in c u

translator was designed ,7iti the assum17ti tPi the un,

programs are correct, an'," error-Cs J te:ed vi> rs :o

g-ammar discrepancies a;,:, i, : "sr- o- t C r cn I

processed.

Te major addition to the skeleton Lo co:-,pluu tn

parser was the lexical processor or scannir. V

subroutine performs a lexical analysis of tie in

supplies the parser With the tokens of the input str .

For example, the assignment statement in figure 1 cons:-,,

of three lexical elements: (1) TEST'FLAG which is a VJ

identifier or <name>, (2) the equal sign, and (3) :,w

reserved word FALSE. The lexical structure differs fro. ,',

17

TEST'FLAG = FALSE

Fi, 1. Assignment Statement

language to another implying the neeJ o -ri

scanner. The lexical elements of Jo coni ,'

(1) reserved words and symbols, (2) identifitrs or -.

(3) numbers, (4) character strins or <characL:-r -1Lr_-

(5) directives, and (6) comments. ProcedurL, L 1' L

to the lexical processor are oscd to =.

elements of the languagc. ThLsL pro cJdrs .s

several functions which support thl Iu::i c ,ro r

described in Appendix C.

Semantic Processi.i,. TIIL se:2antic process- ds ri>

the actual language processing. L te snLL1:ui s

processor, the parser is complete in ti w ill rLco:i..:,

the grammar. However, for a languagc procussor L> c.rOr.

useful function, the definition of tim se;antic process mu-_

be provided. Tnese routines are very dependcnt on thim

source language and the purpose of the language processor.

For example, the semantic processor of a compiler typically

contains the symbol table manipulator an- code generator.

However, for a translator, the semantic processor needs to

preserve the structure of the source progra--i until it has

been completely parsed, at which time translation can

18

I

proceed. The data structure that was selected to repr.se:i

the program was the parse tree. An example of a parti, '

parse tree of the assignment statement from figure 1

shown in figure 2. The labels on the links in figure 2 will

be discussed in the next paragraph.

<assignment- statement)

ab

<target-list) (express iYn

Fig 2. Partial Parse T,,-,

The reason that this struct.r .4as s!ected ,-;,

records the coy lete parse of tie sourCe pr ,gr<. c, ill.

further processing on an ele-e' t-by-elenc-t b>si .

The speci'ic data s ractarc t: s'_ !1'ect,

represent the parse tree was a linke, list. Thit nc , hi,

represents the assignment stdte';:ent i tigure " -

consist of four list elements, one describing tne node an,

three identifying the subtrees of the node, and is shu..:n i:i

figure 3. This is accomplished by using four identicQ%

elements each containing the three foilon;ing fields:

(1) NODE'PrR which is an integer field, (2) LINK'TYPE which

is an integer field, and (3) NODE'LINK which is a pointer

field containing an absolute machine address. The contents

19

NODE'PTR 369

LINK'TYPE 0

NODE' LINK

NODE'PTR a --> <target-list>

LINK'TYPE 0

NODE NODE'LINK

NODEIPIK b -- > -

LINK'rYPE 0

NODE' LINK

NODE'PTR c -> expressiocm)

LI NK ' YP 0

NODE' LINK

Fig 3. <assignment-stnt> Node

of NODE'PTR of the first element of the linked list

representation of a parse tree node contaiins the production

number, or language rul,_, -hat was used to obtain the node

from its subtrees. NODE'PTR of all other elements of a node

contain the node number which identifies the subtrees. Th,_,

20

valuto contained in NODE'PTA of these remainin5 ele.c:t.s

correspond to the links shown in figure 1. LINK'TYPE = C

for all elements of an internal node of the tree an,!

indicate that NODE'LINK points to the next element of tiu

node. The final element of a node will have a NODE'LI. •

that has a null value. Using this structure to describe

node within the tree, the nodes of various sizes cai: .L

efficiently stored without wasted space, a very impor!;

consideration in such a large softwarL project. iIi

structure also allows for the dyna-ic naturu of t:.1

during the translation process.

If the node is a terminal nodu, a leaf of h trct

then the value of LINK'TYPE will be non-zero an2 -: ot

fields will have other me ining s. For all tcr:.i:,:i n,)d .

NODE'PTh will contain the tok en nut-ber of tLeu tcr:;i:,

symbol. If the terminal node is a reserved word or srb 01

LINK'TYPE will have thk: value 3, and ODL'LINK will have

null value. If the ter-inal node is a <nae> or

<character-literal>, LI2K'TYPE will have the valu 3, but

NODE'LINK will point to another e I e-Tcen t wh ich will bc

interpreted as follows. If the node is a <nam,_ ,

NODE'PTR = 0, LINK'TYPE = 3, and NODE'LINK points to the

symbol table entry for the <name>. If the node is a

<character-literal>, NODE'PTR contains the index into the

string table to identify the string, LINK'TYPE = 3, and

NODE'LINK has a null value.

21

If iL L ermina node is an <integer-liter, •,

LINK'TYPE = 1, and NODE'LINK points to an element that

contains the integer value of the node. If the termin,'

node is a <real-literal>, LINK'TYPE = 2, and NODE'LI:.

points to an element that contains the real value of thi.

node.

The parse tree is a collection of these nodes, suC:i

that the root of the parse tree is the <complete-prjjra: "

and NODE(I) contains a pointer to the first ele:c: of t:)

Ith node. J73 has pointer variables whio can b ,.sil,"

manipulated to implement a linked list struc'arL; h0x':-,

the current compiler does not yet support exccution Li>:. w

dynamic allocation of menory. ItlerUfor, it 1 1C L '

to declare a HEAP, or large storage space, waici: can n u,,:

to store these dynamic eleients. In order Lu 0 a .fici4

use of such a neap, a dynamic allocation a1;.r ,

implemented as a function Nh,.P, is used to Con< ,;

allocation of new elements. Durin0 tLe parsing; pruc.",

parse tree is continually gru :in o and duailocaLio, u, ',, k.

heap space does not occur. Inurefore, LXT" UDL, w[ic .,;

the index of the next available NODL, needs on',, to l~s

incremented by one each time a node is allocated. LieisL,

NEXT'HEAP, which is the pointer address of the nc:.ex

available heap space, needs only to be incremented by t:nc

size of the space to be allocated. Additional routines ant:

data structures to implement the allocation algorithms will

be covered during the discussion of the translation Tondut.

22

mhe heap is also ued for storage of the symjol tabU1.

For a translation system, the entire symbol table must b

kept until the translated program can be output since t:,,

terminal nodes simply contain a pointer into the sv U

table to identify the <name> of the node. Thlis I

contrasted to the maintenance Of the symbol t-1ile in , :1

pass compiler where the symbol table entries for A

lexical level can be deleted when that lexicAl le\L ii:

exi ted. The symbol table is stored as a hasit-co.

collection of separate chains (Ref 10:513) w!cr i ()

contains a pointer to the first symbol table entry it,

Ith chain. Lacn elenent of the symbol table co:i: i- I

fields: (1) SYX'SIOrL'PIN which is thv ind,.: t ,

character storage array for tnc. first cr.ct.. u, " ..

symbol, (2) SYY 0L' L L,.. whic., is the nucr o. cr L

in the symbol, (3) SY:'LIK which contains a pointLr ,- ! .

next element of tnL chain, (4) TYPL'CLASS whichi is ,

define the class of the sym1aol , an,! (5) PhJU' :t:: wI C,

indicates which procedure the sv'mbol was declarid in. T!,_

possible type classes are listed in talL I a,. r u

during the parsing process to return tile proper tour,: svn>>l

from the lexical scanner. PROC'NU, is used to allow t I

same <name> to be used at different lexical levels. Anot- i-

array, PARENT'PROC, is used to identify the nesting of th,

procedures.

Symbol table entries are made by the scannin

procedures at the time that the symbol is first scanne d i:i

23

TABLE 11

Type Classes

Value Classification

0 <name>
1 <item-type-name>
2 <table-type-name>
3 <block- type-name>
4 <proc-name>
5 <label-name>
6 <define-name>
7 <proc-label-nam e>

procedure NAIE'RESWORD. The scanner di so O ui1 s t:

terminal nodes of the parse tree and provides the nu:K~r

the node to the semantic processor :or tne semantic sty.:.

The remainder of the semantic processing is acco:ishtdin

procedure SEMATIC, which is called from DO'NLDVY x,,'hcn

reduction is to take place. The semantic stacK .'ill contuii:

the node numbers of each of the subtrees of thl currt: V

production, or rule, that is to be reduced. The semantic

process consists of building a new nodc which co:mbines

subtrees of the production. For exam1,L tc prLuc i0,

used to build the assignment statement is stio.n in ti urO

<assignment-stnt> <tar~et-list> = <expression>

Fig 4. Assignment Statement Production

When SEMANTIC is called, the number of this production is

passed as a parameter and the new node is built from th,

24

semantic stack. The elements on the rignt hand side of t:i

production are at the top of the stack and are useJ

construct a new node as follows: (1) the production numbur

is used to construct the first element of the new nodk,

(2) the last element of the node is on top of the stack

is added to the node by creating a new elecot and li ii

it to the first element. The process of popping tic I
element from the stack and inserting it after ti h ir,

element of the new node is repeated ur.til t e cor pictc no:,

has been constructed. The reduction process t P:Th: pus.!_"

new lefthand side of the production and thc nL.: no ,

was just constructed onto the stacKs.

The semantic routines also adJ in for:t Lon ,, .

symbol table when a declaration is proce s to LS-,:.

the class of the svboI table entry. 1-or eo?.pl,

production in fiouru 5 would cause the sy'7.bol ViablV L'-

for <name> to b, set to indicate that t. entrv' ij,

<item- cype-nwme>.

<item-type-dec> ::= TYPE <name> <item-type-description>

Fig 5. Declaration of Item Type

The same actions would apply for processin5 of blocrk

declarations, procedure declarations, label declarations,

table declarations, and define declarations.

25

When the parsinbmo6 Je has co:.piL iLs trocessi:y o

the parse tree and the symbol table will have been

constructed to allow the translation process to begin.

Translation Module

Translation of the J73 program-, is accomplisnied in t.:

separate steps. The symbol table is processed :ir>"

followed by the processing of the parse true. Proccssin.

the symbol table translates J73 identifiers in L t)

identifers. The identifiers of both lan uages cu, I.. :

primarily of letters and di 6 its. The o:il.,' diffcrencs

between the identifiers is the use of tiL dollar si_: an d

the single quote in J73 and the usu of tLm u:n, rscorL in

Ada. The dollar sibn is uses to rPr sLlt S9P'

characters that mavy be requirLd in exter:nL1 namus and i

implementation defined. Ada has no eyuivalent structure;

therefore, the dollar sign is not translatarie and is nuo

allowed in programs to be translated. The use of th.< .73

single quote is similar to thL use of the underscore in Ad,

but J73 allows a more liberal use of the sinle u t .

After surveyinb the programmers who use J73, it was foun

that the most common usage of the single quote was as

seperator between parts of an identifier. Such us,",-

conforms to the rules of the use of the underscore in Ada

and the translator was therefore designed with tfic

requirement that the use of the single quote conform to th

rules of the use of the underscore in Ada. One other

26

assumption was made to preclude tie r

generate new identifiers: J73 identifiers will not consi-

of Ada reserved words. This greatly simplified t:,

translation of identifiers since all that is now required -

changing all single quotes into underscores during a sinol.

pass through the symbol table character strin, stora .

Processing of the symbol table in this manner results i,

each identifier being translated exactly once instea.,'

processing an identifier each time that it found in t.)

parse tree, If JATS was an interactive s.,ste.::, t c ab,''

limitations could be removed since JA 1 could re uL>2

assistance from the user to rena_t an.' idenriii< thet w,.

found to not conform to tne rulLs of An,.

The remainder of Lh t? trl ricS n proccss coLO)iILtC S '

manipulation of the parse tree b; proced u- LA..

Translation of the terminl nodus, or 1a- s , is i _

required since the translation of idenLific-rs -- n ar.-.

been accomplished and blanKCt translatio-, of rescrvtd

and symbols is not performed. The translation prct,>.i

language production oriented, that is, eaci node i

processed based on the production number that was usua ,

construct the node. The tree is processed in a botto::: up)

fashion, with each subtree of a given node being processed

before the node itself will be processed. Recall that tiLe

first element of each internal node contains the production

number for the node and this is used to select thL

appropriate action through a case statemcnt. Each l(,:nLu

27

production will have a case alternative that defin .,

specific actions, possibly none, that take place dur>.

translation of a node that was constructed witn

production. There are four basic processes that

performed during translation: (1) chanting reserved worJ

and symbols, (2) adding new terminal symbols, (3) deleti::

existing elements, and (4) rearranging tie elctc-nts of.

node. Each of these operations will be discussed .: rt:..:.

The process of changing a reserved word ar sv::.a -

simple given the structure or tue parhtrL. (.Yi& .

proper element of ti,- node is idc;tif i:

variaDle, NODE'PTrK of tuat ele:: identifi s C

node that contains t; reserve Lr C or sv::..... ..

NODE'PTR of this ter:-,ina-l node contains tn ta:.

that identifies thc reserved ward or symbol. ih h rces,

changing the reserved word or s,'n:-bal then sia;1 rI ,:l

changing thc value of NUDL'P7Tr aL tU tcr2.i:frl n~K. i

process of changin o a s -Ibol or resur vd word is Ltr-.:

by procedure ChAI'GL'UJ DL. The translatir, racs :t

assignment statement from figure 2 is show;n in figu re 6.

When the node that represents the <assignmen t-stmt> is

translated, a pointer variable, N'PFR, is updatej. L

identify the second element of the node. :NODL'Pli at tli s

element identifies the node that represents the equal siLr.

The value of NODE'PTR for the equal sign is 48 andi

changed to a value of 171 to represent the assign:"e:

operator of Ada.

28

NODE'PT71 ;369

LINK'TYPE 0

NODE' LINK

NODE'PTR a Ktae -1ist>

LINK'TYPE 0

NODE NODE'LINK

NODE'PTR b ox 7

LINK'TYPE 0 b

NUDE' LINK

NODE'PTl, C <- Kexressio 4

LI:K'TYPE 0

NODE' LIK

Fig 6. Translation of <assignment-s,-.t>

The process of adding; a new terminalsv..o1 to tK,

production is a little more difficult. It involves creitin.

a new node and inserting a new element in the chain e:

elements which makes up the node. This requires that ti,,

position of the new element be identified anJ the new

29

terminal svmbol be specified. Onc the e1e:: .i.

preceed the new element has been identified, jrocuz:

ADD'NODE will create a new nodt that represents tLI :,.

terminal svmbol and establish Ene necessary links.

process is shown in figure 7 ior tic t rnslatio ,

<label> where a new sv <<bol, << must bL- a -aed ,Lo), '

<proc-labe-namu,' a,, th U Clon foll.,i:.

<proc-label-na_-e> is chanldj to X>.

NODE NODE' £TZ*, --3Ur8 i:: "-:,

LI>K'TYPn 0

N 0D E NODE' P-1:. .,rc

NODE' LIUK

NODE'PTI\ ->

LIN4K' TYPE 0

NODE' LI;K

Fig 7. Translation of <label>

30

The process of deleting an element of a no'Da i

simple, just relink the appropriate elements of the chain-

eliminate the desired element. However, since the tree i-

dynamic structure, the utilization of the heap is :,

efficient when some type of storage reclamation is perfor.,

as elements ot tihe tree are deleted. Tnerefore, c

procedures, DELETE'NODE and DELETIL'SUbTnEE, artf use,! :o fr .

heap spuce when a nod ele.ent is deletue fro:. tr . -

tre . D'LETE'NODE reluases tne identified ie:.n ro:-

node's chain while DbL[T.'L'S UlFr, releases

elel-ents of the subtrte t! * weru deIeted as a rs

deletion of Lne init ial . Ho'::.v'r, s:. :w. >

the allocation 1.orit: w: r.

reallocation of the Sp cr s

reclamation. Usinj a- t saru

can contain either a pointer U iO , n) c

or an integer Valu-, 71Li1'OD9(l), ,

nodu of the linked list of a t

NODE(NEXT'NOD) is allocated, F -Ti (

a linK to the next available noLe 2 , C,

cannot simply be incremented as durin O th parsinh pruc< -

Storage reclamation of the released node ele-mt7 i

accomplished by linking the elements tocetv;Ir usin tL:

already available pointer field NODL'LlNK. If a list :

available elements exists, FREE'PT' is a pointer t L

first available element in the list and NODE'LIN ,'

FREE'PTR is a link to the next available clt. If t>

31

list is empty, FREIL'PTR = 'NULL, and allocation i.

is necessary.

Rearran-ing the elements of a nodL. is also a si.'

operation wi th the structure of the parsc t r u,

corresponds to swappin,- the order of Llt sub trui!, ot a Io"
Procedure SvWAP' NODES is used to swap two ele2;ecn-,s t

adjacent. If the desired elements a reu i no

repeated swaps rtas- be performed un-.il tnu dusiru, cnan.,,

achieved. An e xam pl1e of this process can bt- sL .- ,. 4:n

translation of a <pro rai-7.-bodx'> usin_ pro"dact-ion n::

Ihle st-ructure: of the parsci noJdo 1 ; L L),in

fig;ure 8b shows tne resul: -s afteCrs i

correspond to the niod es dJinn t2JI In~ n.t i

b. (dec-list.> BLE-iN <st7.t-list>Ks-J 1

c. <dec-list'> BE6'IN Ksab-def- list> <stnt lis'-.

d. (dec-list> (sub-def-list> bEG--IN (stint-list>
(airec t-com-ounj-- ,.1 2,

Fig, 8. Translation of (program-bodv>,

Then (stint-list> and <sub-def-list> are swapped resultin.p i:n

figure 8c. Finally, BEGIN and (sub-def-list> are swappeu'

and a semicolon is added as the last element of the no.

32

compIp -he translation as shown in figure 6d. ;

the first element of the two that are to be swapped must

identified by a pointer variable each time.

One other procedure is used durin,- the translati :.

process to simplify the actions takin; piac. Th a-

procedure NOVE'PT, which simply moves tne pointer i:n t]t

node's chain of elements a specified number of elemL:V.

1,1ost of the language prudoctions t;iat n v,

translated used simple additions, dclutions, ano cho ,.s,

the nodes. However, so2c of the transl, ions ruir 1 :-

worK. One example is tne transli:tion ,,* i:nt: c-r

declarations that specified tic <in teLr-s. iN '.

variable. Although the translation doe nc" in":

representation specifications o ' ra:>c co:;. :

placed on integer variables %; :i, possi<. •

integer wa3 unsigned tnien te r:C is s; i,

0..2**<integer-sizL>-1 . If tnc inte.AL,A.

range 01 tnC resulting equiv\i& : . ' -

- (2 tinteger-size>-). .2 K <inte ger-si>- .- s:4,

translation still uses sim)le a itions to co.str,:<:

node.

J73 character items are translated into Ada ob3L, ,

type STRING, where the string would bc indexed in the ra.

1..<character-size>. With this convention, a: I

<character-literal>s can be translated into Ada strindls.

33

in sumiary , Lhe translation process involv csan

adding, deleting, or rearranging elements of the parse trt,-(

in order to have the parse tree represent an equivalent A,.

source program. Most of the translation routines sim>

required the application of one or more of the suppor''

procedures. It should also be noted that a good man of:

translation routines required no action at all excet *-

indicatin- that the node had been translated.

Since the scope of this research proj ect could -.

encompass the entire translation process, JAf> curre-iTL

translates only a subset of the J73 language. hLo,:excr, _t,:

design of the project included the complete translt- i.

process and additional translation process.nLg c, he a1i15,

to the existing system without m.ajor -io!ificat L s. In

order to make the current translator as use-f: a)ossi ,

the subset of J73 tnat has been translated was selectedt

cover as muchi common usage of the language as possihL .

This includes: (1) basic program structuru, (2) data ire

declarations and type declarations, (3) procedlurc

definitions, and (4) most basic statements. A suofar: of

the translated productions is contained in Appendix B.

To aid the user in identifying any sections of J73 code

that may not have been completely translated, some method of

marking each node as having been translated or not must he

used. The technique used in this system is an array of

boolean variables that correspond to each node of the tree.

34

The ei~iAie array is ii.,t .zed with the value FALSE ani,

NODE(I) is translated the corresponding value

TRAN'FLAG(1) is set TRUE. This will then be used during t.i ,

prettyprint process to identify the sections of code t:1.

were not translated.

Prettyprint Module

The usefulness of an automated translat,)r sste:; o

be questionable if the forntiat of the outPut was difficul-

interpret. In order to get the most out of tic trinslt iv,,

the resulting program should display the stractire)f 1,

language as much as possible. The Ad. rfrc ct man

suggests some foratting con'emty, t odis 9. v

structure of the language. The)rctty rit '"o"0 ' .i> e.U

the translated program usiag these formatting con\C .-

The lexical elements that will make u,) the Ad,i prorai 7. ,

the leaves of the translated parse tree and arc outLi '.t"

left to right. Indentation and li-ic br-ik, ar. ci:i

through thc, ase of a case s tatement i)k i:1 - wir

reserved words and symbols. For example, wit'n tiLc exc, t<i{'

of a formal parameter list in a procedure dc:Laition, <a

semicolon is a statement terminator and is use, to get:-

an end-of-line and carriage-return. Another eial is tit

reserved word ELSE, which must be oatput two spaces to C

left of the current tab marker while the statements betecn

the ELSE and END IF aru output at the tab marker.

35

Also output during the prectydftivLt process are w'ariing

messages that identify sections of code that have not bec;

translated and require user translation. This allows t,

user to quickly identify those sections of code which w-

require attention.

Conclusion

JATS is a fairly com.nlex lan ua u processo- tL?,s

consists of three functional modules. ThI pars r '.

which was developed using the LLN. softr i)aL2I a

constructs a parse tree of the J773 prour,2. Int t.- slat,1

module modifies the parse tree to represenit i,

Ada source program. Finally, the prettyprilt nu),ibuie

a formatted text file to allow the Li s k2 to t3 .

translated source code.

However, the user shold h a of sev'<

limitations of JATS and somLc of thc prJole of ---s

syntax translation. These will be discusse,. in the n,,"

section. Still, JATS should prove valo ble for i nro ."

Ada to current J73 programners.

36

V Results anJ Reco::,

The primary resL.lt of this research project is ;i

translation system,]AT-, which pro\ides a lim it

capability for J7-, users to automatically translate 7'

programs into equivalent Ada programs. Any user mus ,

cautioned on several points before usin5 JATS. The mo.:

obvious caution is that JAIS, as it is curreiL

implemented, is incomnplete and piaces severli rl trictii,

upon the user. These include: (11) uQ of -C qi> jUOd.

in J73 declared <name>s must confor-', t r.ic 'u '

underscore in Ada and the use of the ol 1r 0 o 11 .iY

allowed, (2) J73 <namec>s cannt be A, reser ''e L:rV

(3) <block-presct>s ar" not allowe, !i pr<r :) i

translated, (4) size specifiers in some tA dcc Y4r ti,r,,

have limited definitions as show'n in table I, and <) usc)f

DEFINEs is not allow sice tie mechanis2.i f,)r pricessi t

DEFINs has not yet aeen incorpordited in JAT. A su'>,i:r.',

the translated J73 ian ua e pr)J c' L)'L ; is colt i-,L 1.': ;

Appendix B.

Another point that all user, of JATS should h awirc .)I

is that JATS translates a J73 algorithn into an e i 'aleit ,

Ada algorithm. This means that, while t,,, translated c,-,.

will be correct, the translated version may not ;ak use 7

the features of Ada. Such an example is the use of decldre,

boolein flags to carry an error condi tion through the cod

During the translation process, the code will be tr,%is" '

37

correctly but Ada's exception hanidling techniques ,ujl;

probably be more appropriate. This defficiency is not

unique to JATS but is an inherent problem in automatic"

translator syste,,is.

With these limitations in mind, JATS was tested against

small example J73 programs that primarily consisted of Ltk

translatable language constructs. In all tested cases,

translation was correct where possible and those sections of

code that were not translated were properly identified. O'ic

exception to this result is the WHEN OTHERS case alteriativ.

in the Ada version of the case statement. It ,,:ill I)c t ,

first alternative in the translated versioni rather tan thi-

final alternative of the case statement. An exi:ile J73

program and its translation is provided in Appendi E.

This research project not only produced a valuable t,)

to aid in the transition to Ada as the DuD standi i r

programmin , language for embedJdt computer syste:is but alS

provided the author .jith an invaluable experience in the

development of language processing softar . A task of tis

maagnitude presented a real challenge for the author ii

several areas: (1) grammar analysis, (2) parsing techniques,

and (3) translation techniques.

The LR automatic parser generator package from LLNL has

been used at AFIT in other language processors, mainly

compilers and interpreters. This project added a translator

to the list of projects developed using LR. It a',

38

- iii________________

required modification of LRS to dccet) ,L: ,.."

grammar, which will allow future users to prucess, lar I,
grammars with LRS. However, it should be noted that L.-

a very large program with a very large me:miry and proctess

time requirement.

One other area that required consid2rbl e, f ,r,,

designing an LR(1) grammar for J73. Initially, tat .'-

grammar was obtained from M L-STD- I 589A and re,1u' :-,f

extensive modification to produce a r m~ar that .,as LR(1)

After considerable effort to product a tilVy LR(1) ,

an LR(1) grammar for the execotable state'mic-v-s ,)o .7j w,'-;

obtained from Sof tech Inc.; however, sev ,r. r- r .s. i

existed in the grammar for the dclara tivu p arts o' .2 .

as a result, severil linitatro:s have v ecesr

placed on the user.

The other major areas of effort er Lic parsij

translation processes a id the usc of Ce appropriat" ' J'

structures for efficient utilization of resoor,.es a-id c,

of tranislation. Although the data structares tie Tci

were not new, the implementation of srmhe these St'c IrC s

was a new experience for the author. An example of tiis is

the dynamic allocation algorithms and the use of the O','ELA.

declaration to allocate the same me-iory to to differeu'

data structures, the tree nodes and a linked list ot

available nodes.

The process of translation als) id-,iitied V sV'>

39

areas that present some difficulties. The trar 1ativ,

bit variables will require real work. If the bit variabil

has a size of one bit, then it can be translated into

boolean variable, and the bit literals of '1' and '0' can

translated into the boolean literals TRUE and FAL.'il,

respectively. However, if the bit variable is larger th,4

one bit, then the translation must create an abstract d,

type that will allow the bit literals to be trinsatL.

easily. Also required during translation of bit liter, s

consideration of the bead size. The bed siwe of

literal refers to the weight of each char icter . t

literal string such that a bead site of 16 in1ic.:v

the string represents a hexaleciral value. Tih v'XLi h,

sizes range from one to sixteen. In other 4,or-s, t-, ocnt

bit literal 3B'24' is equivaleit to the binary bit liter.

IB'010100' and some convention of trinslatin the h>"

literals must be established depending upoi tihe sdccif

data structure used to implement the bit vari.ibles.

The translation of parameter lists for sahr tilj 'il

also be a serious problem. In J73, the typig of t i

parameters occurs during the processing of the declaratims

in the <subroutine-body>. However, Ada requires thiit th,

type of the parameters be included in the paramete- ist.

Therefore, translation of parameter lists will require ti

generation of new type declarations fro)m the declarati ,,

that are "hidden" further down the parse tree, so thet L

type names can be used in the parameter lists. Declirt!i ,

40

of some of the data items will also require generuioi u:

new type declarations, for example floating ad fixed d

items.

Other items that are not directly translatable are t!c

directives. Some of them will translate to equivalent Ad

pragmas but others have no counterpart in Ada. F:r exar 1 ,

the COPY directive corresponds to the INCLUDE prajna but ti'lc

register directives have no equivalent pragm:as in Ado.

One additional experience gained b'y the aathor .;as i

the use of J73. Although experienced witli several ot "r

block structured languages, J73 still presented soc n,<

experiences, especially since the language and co-ipiler ar:

still evolving. However, J73 was an enjoyable lanouagu

work with; the only real problem encountered 4a. thu lack of

execution time error diagnostics, which sometimes made t

debug 6 ing process difficult.

A project of this magnitude very often leaves roo:. f,

future work, and several arUas have been identified aI

candidates for conitinued development efforts. These

recommendations are listed below.

1. Modify JATS to translate J73 as defined ii

MIL-STD-1589B. The current version translates IIL-STD-15S9.'

and the B version was released too late to be included in

this research project. However, JATS was designed to all),:

a redefinition of the input grammar withoil' vaj or

41

modifications to JATS. It snould be noted that the sour,:

code for JATS itself currently conforms to 1,1iL-STD-1589b.

2. Complete the translation module. As currentl.,

implemented, JAT5 is incomplete and cannot translate all of

J73. The addition of the remaining translation routin

will allow JATS to automatically translate more of the !7J

syntax. JATS was designed to allow the addition of tde

missing translation routines.

3. Add the capability to process exter:ial files 8i

that COMPOOL and COPY directives can be used ii tli J7

program. This will rejuire the construcLion of t .:

table for the declarations that are cooLained i thCo'2

module, and scanning of the exter~ial file for tL:c C ,

directive.

4. Improve the translation process by m i

interactive and allow the user to identify sections of ,,,

that require manual translation. This ;ould he p)ossi),>

using the currently available SKIP, BEGIN, and E;

directives. Then JATS could allow the user to specit, t!i

translated code interactively for the identified code

for any difficulties that the translator may encountor.

This research project incorporated the use of varinu-

technicues in several topic areas and resulted in

challenging and rewarding experience for the author. The

author hopes that this project will generate contiolu';.

42

p-

interest in the subject areas of Ad and aotu:

translator systems.

43

Bib lio r a pny

1 . "Air Force Working on Single Languag;e for t
Computers," Electronics, 51: 39-40l (October 1976)

2. "1979 Annu..l Technical Report: A Research Progra:2 i,.
Computer Technology," Report ISI/SR-80-17, Inforinati --
Sciences Institute, University of Southern Californi~i
Marina del Rey, California, June 1979.

3. Defense Advanced Research Projects A-ency. Reurm't

for Ada Pro,,ranming Sujor L Environment.s: Stzoe-7".
Washington, D.C. : Department of Defense, Feb,-ruairc 196,.

4. Defense Advanced Research Proj ects Agenc.'. keqjnirei2c>,,-
for the Prog-,amiiing Environime-nt for Lhe o':: IV
Order Langjuage: Pebble7man. Washinoton, D.C.: Depar*t";t:.

5Uefense, July 1978.

5. Fisnier, David A. "DoD's Comm-.on Pr og r r:~ng Lag g
Effort," Compzuter, 11 : 24-33 (Arh197S)

6. Gillmnann, Richard. "An Intermiediite LnagoforC'-
and Ada, " Autops; Note 15, 1 n fo r;ma L - 1,c ie: 1
institute, University of SouthAeri Cal fr 1ia ,a ar I
del Rey, California., 12 April 1979.

7. Harrison, Michael A. Introduction t,) FornaIcl ,an ,2g
Tneory. Redding;, riassachFus-ette-S:- Js-Vlc
Publishing Company, 197u.

8. J73 Statement rmmr Softech Incorporifted a ,

M,,assachusettes, Aug ust. 19S:).

9. Knuthi, Donald E. The Art o0f Com-2 aeLCr1 PIugan-Q g
Vo lume 1 F u nda -mie nt al I&ri Ea!-I

Massachusettes: Ad d ison-We sl eY PubIi sh i ng C 071-11..

1973.

10. Knuth, Doniald E. The ArtL of Com 22uter Pormig
Volune 3, S rtIng -and- S earchingL. kedi gQI:,
Massachusettes: Addisoni-Wieslev-PubYliI Co-ip a: ,
1973.

11 . MIL-STD-1 589A. Military Standard Jovi a I 973)
Washington, D.C.: Departmnent of Defense, 15 Aar 199

12. Wetherell, Charles and Alfred Shannon. LR: AutomatLic
Parser Generator and LR_(1) Parser. Report UCRL-8292.).
LCa-wren ic e I v e r no r e atio n alr Lfab oradtor y, Cal if orniai,
14 June 1979.

44

Whir.,-: WilLiam A. "Ada - Tntc DiD 6 ;o~i.y
Lang~uage Effort," NAECOtNv 1979, 3: 1272-1275
(March 1979).

Appendix q

LR: Automatic Parser Generator and LRK1) Parser

"LR is a pair of programs--an automnatic parse:-
generator and an LR(1) parser. The parser generator
reads a context-free grammar in a modified B VF
format and produces tables which describe an LR(I)
parsing automaton. The parser is a suitu o:
subroutines which interprete the tables to cons tact
a parse of an input stream suppliel by a (loca-v,
writen) lexical analyzer. The entire system ma, ID
used to generate parsers for compilers, utility
routines, command interpreters, and the liKe. K",
and its predecessors have been in use at Lawr -c- ,

Livermo re [National] Laboratory (LL[N]L) for t
years. LR's outstanding characteristic iS tnie k2

wit i which new tables can be generiaed to r,,v
change in the language to be pars.. I
flexibility is prized by program;er i
utilities and command interpreter s;I inp-'
lanua 0e typically grow and change dur ing pro:-
develoden L. LK is vr it ten entire '2 in ;;' :.
standard FORT:RAN 66 and requires onl. minor ha,
when T-oVed to a new co'.puter" (R " 10:I).

LR was an impor-i n t part of t he JI so) f1'

development. Major Mlichael Wirtn has bee-n nt ru.,1 i- . it

promoting the use of LR in the developmen" of co pi r '.

interoreters at AFIT. A coyl etv undhrs 'd cdind ofI

requires knowlelge of formal language theory h1' iW .<A

required to use the package. However, for the intercst.

reader, an understanding of the data structures usedin th

parser tables is helpful in understanding the pa rs;

process.

The parsing tables produced by LRS consist of

collection of arrays, FORTRAN dimensioned variables, th&

contain the control information for the finite st,',

46

automaton which performs the parsing.

The vocabulary of the language is described using two

arrays, V and VOC. V contains a contiguous stream o'

character strings which are the vocabulary elements. VQ>

contains pointers into V to identify the start if

vocabulary string that has the token number Lhic is tli

index into VOC. Figure 9 illustrates this relationsli,? and

shows that the token number for the reserved word P J& AXI i<

138.

N

V P K 0 G K1 A].

138 139

Fig 9. Vocabil;ary Data S;trictir

The transition data is contained in three arrays: FIr:X,

TRAN, and ENT. FrEN contains pointers into TRAd which

contains a set of state numbers for possible transitions.

ENT contains the token number 3f the Lvquired lookaheiA

symbol for a transition to that state. Figure 10

illustrates this structure. Thus, fir a given state, S, a

47

K K+5

F1 ,: KK

S S+I

sl s2 s3 s S5

Fig 10. Transition Dat Sra~ctLir,

seairch of tiie possible st,iLe s in TIXAr f- ai aflorav

transition based upon the current lookahea;, s,.1) a t 1,

entrance symbol will identify the next st:-ite o 'it

automatorl. Thus as sho.;n in figure 10, fr s ti e Ie

transition to one of five states, Si ,. 3..,5, is pos ' '-

based upon the lookahead tokeis TI , ... , T5, respctive ,

The reduction data is contained in sevuli arr-i;s: Fk'.),

NSET, LSET, LS, PROD, LHS, and LEN. LS and LSET define tCi

lookahead sets where LS contains the lrokaheid ses as .i

contiguous array of integers, representing the tokei

numbers, and LSET identifies the beginning of each lookaheji

set. Therefore, each lookahead set can be identified by i'-

index into LSET. NSET contains collections of lookahend set

48

. . ..k.Li ii ,. 1 . . .

numbers and FRED contains pointers i11 L25, i ,,iC: ii.

the collection of lookahead sets which apply for tLu v

reduction. If one of the lookahead sets of the given sti',

S, contains the curretit token, PROD(S) contains the langu= w

production number that will be used to perfor .i L.l

reduction. Figure 11 illustrates this relationshi,.

K K+4

LS Ti I 2- T3 f-/J

E - II /

N ~S E T
J J+3

P 1ROD 3E/J
/iEl , J 3

Fig 11 . Reduction Data Structirc

Thus, for a given state S, FRED identifies, through NSEf a'id

LSET, which lookahead sets must be checke, to all-w t ,i

49

reduction in PROD to be useu basen on t.ic cor,'

current lookahead symbol. The remaining two arra: c

the reduction information. LEN contains the lengt.) of.

righthand side of the production and LHS contains the tK.

number of the symbol on tne lefthand side of the productiw-.

When the reduction is performled, LEN wilL indic t L e

number of elements that will be popped oft of t'ie stak

LHS contains the token number that will be pushed o: t

token stack.

Note, these data structures are producu, t, '

FORTRAN 66 option for table structure and :erc rct' ,

JATS in order to use the sa:-,e parin 0 al rit:i> t. C

supplied in PRb.

However, before a co -yIlete set of pUrr- t- .h .I .

generated several changeq zr C re 4 'i-, to a L .. .,

accept the large J73 gramnr;ar. Tiles; ChdIc in .

increasi g the size s of so:e of the dimci ne, vauri

and other related variables. The stritg stora g ,r Lc,

input grammar was limited by the diineuision of SSTIJR an, T',

value of MAXSSr. To allow for the large nuc r

productions, the value of M[XPROD and the dimensi) of P:J'

had to be increased. Also dependent Uon t' nlu . : 1K

productions was the dimensioned variable 'IAEK wit i

subroutine CO:IPLT. The storage of reduction and transi io-.

data was limited by the dimensions of RED and T,A.,

respectively, and the values of MXAY. and EA. 1) a,

50

respectively. Other d iine n s .o n e \V-ir idb 1es u-sc

grammar analysis thar- had to bte increaseJ in si. e

BASIS, NEXT, ITEMI, and PRODCN;. Tniese Chdale.1 are surn~narI.u

i~n table Ill.

TABLE Iltl

ChanLges to Dimensioned Variaulcis of -

Dimensioned Diimens LorL;
Variable Old Ne 1

SSTORE 3300 1 00%
PKDIND 500 10j3o~
TRA 4003 200
RLj 41003 33
N EXT 5000 8330
TI T3 d J
BAS iS 80 w) 24 00
PRUDCNI 14 033

Tile OCICr Chdf ILe C 1'i~ L P .'

conivenie-ice. Anoz-'ier sur'tie c'iL~ ! ~~~cs I.

wh ich createl separaite ouwl i e fol L iu rt

and Lgrammar a'ia lvsis. This Chve I c llii 1,~ C; ei L;.2

to OUTPUT within subroutine,, TABLE'.' an~~Ri DU bU c!hd 'I t2 1

OIJTTAB.

Appendix B

J73 Lanaujjei Productions

The following, list is the lan-ua ;t productiori.

output from the grammar analysis of LRS. Those proJacl-i'

that have been translated are preceeded by an as'~eri- -..

1 KSYSTEY1 GOiAL SYMBOL> :-END KCOMLETE-PROGRAA' VND

*2 KCOMP LET E- PROGRA?1> <:400ULE>
*3 / COMPLE.TE-PROGRA::>KADLU:

*4 <MODULE> KCOMPO0L-,M1DULE>
*5 / PROC-MODCLE>
*6 / KAAI-RGA-TUE

7 KCO!APOOL-:40DCLE> START KCOM4POCN D-CO'-PJJL> K :
(COMPOUL-DIEC-LI S T> <KC I P T"

8 /START (C0>IP01(, DCO:1PJDL> <A
KCOMPOUND-TE<, >

*9 <COM~PDUND-COMPQOL> U>PJ
*10 / <DI RECT LVE> KDPUN-U

11 <PROC-MODULE> START <DEC-LIS'T'>
KG-ESTED-SUb-LIS)<JMJOl

12 / ~~~STAtRTKNJ-S -5-L 2

*13 (NON-NESTED-SUB6-LIST> N- S DSi

15 <NON-NESTED-SUB> DEE (SUB-DEF>
*16 /<SUB-DEE>

*17 (MAIN-PROGRAYI-MODU:LE>
START (COMIPOUND- PROGRA*1 (N.AA'E> ,KOIuN-ED,

(NON-NEST ED-SUB- LIST> (CONPOU;ND- rEHRN>

*18 /START (COMPOUND-PROGR..V.> (NAM1E> (CMON-D
(COMPOU;4D-TERM'>

*1 9 /STARr <COMPOUFJ-PROG-RAM > (NAM'E> < ST!MT>
(NON-NESTED-SUB-LIST> <COMPOUND-TERM 1>

*20 /START (COMPOUND-PROGRAM> (NAME> -1<T:; T
(COMPOUND- TERM>D

*21 (COMPOUND-PROGRAM> PROGRA'-
*22 < DIRECTIVE> C PUDPRu\.

*23 (COMPOUND-BODY> (PROGRAM-BODY>
*24 < DIRECTIVE> <COMPFOUND- BODY'>

*25 (COMPOUND-TERMl> TERM
*26 / DIRLECTIVE> <uLDTR:

*27 <PROGRA.M-BODY>
:~BEGIN (DEC-LISTr> (STtAT-LIST>(S-DI-

(DI RECT-COMPOUiND- END>
*28 /BEGIN (DEC-LIST>(SM-IKD c-CMa:-
*29 /BEGIN (STAT-LIST> (Slb-DEF-1LIST'r>

(DIRECT-COMPOUND-END>

*30 <DIRECT-COMPOUND-END> : C:P=N-ED
*31 I lRCPfLVb>

32 _'INTW 'E-M.IACHlNE-PARAMFTVK>, BI TS',
33 b Irb LT Al u D

35 /BYT S iN .Or
36 /BIT'fs L 1., 3Li1K!
37 /FLU ATiPRL5(1 -I',:X
38 / FiXE D p K: L, 1,
39 /FL0ATr6-,DI X
40 /A 1i-Li 3Tp K","S

41 /lPF J P 11Y

4 2 / I, :1 1 1 ,,TI
(<(F, -71A

43 /, LF L 0AT p K C
4/4
45 L/ MXN S I
46 /.A MA2i Y,.
47 S IL IKv
48 / >1AXINF (K-_:;> .'
49 ,'MIN1N FN;.
50 / MAXsL1)P
51 /I MNSriup
52 /MAxS[61;DI ;: 1")
53/M.NIr((F'>hL
54 /M FL~

55 /MINSCALE (K>lA> l,)
56 ,' MJr<ELPRE-ISION'

57 <FLOATING-MACRiNE-PARAX>-7FELK>
::MAXFLOAT (FORM*lULA>)

58 /MINFLOAT (FOR:MULi ,)

53

/ FLOATRELPRECISION (FOR:lUL.\>)
60 IFLOATUNDERFLOW ((FORM-ULA>)

61 (FIXED-M1ACi-{INE-PARAAE4ThrR>
: = MAXFIXED < FORMULA> , FORM-ULA>)

62 / MINFIXED < FORMULA> , FORM"ULA>)

*63 (DEC-LIST> (DEC-LISTF> <DEC>
*64 / DEC-LIST> <> ULL-ST:1T> <Dl.>
*65 / NULL-STM'T> <DEC>
*66 / DEC>

67 (DEC> (DATA,-DEC>
*68 / TYPE-DEC>
*69 / SUB-DEQJ
*70 < (ST MTr- NA,:IE- DK.

71/ D1-LC

73 / (VLt<LAY-DLK&,>
*74 < INLI 1N E- 1 EvC>

*7D/ BEGI1, <~ (D f- C-r S T) A
~~01 RC(DI LVE) KDKC_'

78 /' L

79 (COlMPC')OL-DEC> <ElX i:., ;% -):_

81 < KTYP L- 1 -'_
82 / (DIEIF D
83 /<0V't:\LA'Y-D.>
84/ AL-SA

,6 <DAA <I r0(F D L K

*63/ (fA!3L -DL P

"91 <ITLM,--DEC> ITEM (NAMEH> KL!~1D~su
<1'r E1- TY P E-orD C I Pv

*92 (iTrEM-TYPE-DESUCRIPTIO:;> <IPK -I;r K-D;Sr ,L, m
*93/<L)TIN- - LkP'
*94 /<lXI-IfIiDS~ 13
*95 / BI r-I FHDESCRI P r 0,
*96 cAAr>-rM

DESCRI FIIL;
*97/<SAZ-Ifl-DCR i3
*93/(PI:T-IF-DS1PK
*99 / KI rLA-rYP L-,.

5'-4

*1~00 KINTEGER-iTEhM-DESCRilpTio,> Ks - oR-,U>
<KRJOCND - OiR- TL2C L -

K FO RKU11 LA
*1 01 / S-OR-U> <FUR>U7 LA>
*102 /K-RU
*103 / K-OR-U

<ROUN D- OP,- TXU2CAT-

*104 <S-OR-U> S
*105 /u

106 KFLOATING-ITE'I-DESUR IFTION;> F K3DOxTKLx
< Fur L

107 /F KUii
*1 OS F
*109 /F R2---K.\,A

*110 KROUND-OR-Ti<U2'CATh,> h
*1 11/ ,T

113 7 A < K:iML'LA)
1 15 A K< R:ZLK';D

113~~~ j ~ A>RJDCx 1

*117 /

*11 8 CACT:-TEK bC 912 CKF31L
*119

120 KSAISI>--SR Z;>:STAT'isK!17p"-TI
<(, KS>? -LW

121 / ts(KT-'-:

12 2 <STA'iLL'S- lI ST> KTA'- 7AN)
123 / KFO R::L A> KST1-6 6- CO2 0.")
124 /, KSA IS - Ll SD < KSTA rl S -C:Y
125 / STATS-LIST),KORL1>

K STA C 0-CN 6TA';TI>

126 <STATUS- CONSTANT> V (SrAr Lb>)

127 KSTATUJS>
128/Kr>
1 29 / RESERVEU-0ORD>

130 KPOl1NTt-I W4:.-DESCRIPTLON> P KTYPE-N;AM-;>
131p

132 KTABLE-DErC> TABLE <KNA>'E> KLOAJ3-PU
K D1>I-lENS L 0N -L I ST'> TA hL F- D SC P:

55

133 <TABLE- DES CR?Tiu< KS TRUC T C- SP Lt..
<ENTY-SPEL F E R>

134 / E.NTRY-SPEClFLK
135 / TABLE -TYPE -NAME,">

136 / KTABLE-TYPE-NA::K
(TABLF-PRESETr>

137 (LNTRY-SPECIFIER> (ORDI NARY- ENTrY- SPECIFIb:K
138 / SPECI Fi D-ENT.,Y-SPECi Fi. E:

139 (DIMENSION-LIST>
140 / DIAENSIO>N-LI S T -1E H L

141 (DINENSION-LIST-HEAD> ((iES12
142 /(IINI2LPiK

< D I M E,,-; 0;',

143 (DIMENSION > (LOWER-BED <FOK:.'7>X7,.
14-4/(FRL>
145/

146 <LO ER-SOL'ND>

147 (SfIXUCTL!RE-SP,"-L FLEE> PA : A'_K
1 4S /T <1,;~rr .

1 49 /T (Fc.,r
15o3 T <NA.-:9l
151

15 2 (OkDINARY-E.TlvY-SPLCl FLK\r>
<PACK iNG- SP'--L,:L Rk>(IE-Y->1
<T A BL':- PRES ET _>

153 <~ PACK! N6- SPECL F L <1 rI r-TY P E- D
154+ </ I VTYPE- DESCKI PT r2 1AK-P
1 55 /(Ir-YP-Ei< Z :
156 / (A3L;E-PRESET> ; ORDIkY-T:> I

157 /; (ORDINARY-TABLE-BO)v>
156 / PACKI NG-SPECIFL,) <R TA:L- Z:

(OKDI NARY-TABLE- BODY>,
159 / (ACKING-SPECLFlKR (EI2\R-A'2>

160 (PACKING-SPECIFIER> N
161 / 1-
162

163 <ORDINARY-TABLE-BO)DY>
164 /BK; i KO<INY-TW-

OPTIONJ S-LISP) E

165 <ORDINARY -TABL F- iTEO: - DIE 0
ITE:4 (NAMEr> (ITEM-TYPE-D'ESG P1 r I

(PACKING-SPECIlFIER> (TAbLE'-PESEP>
166 /ITEM <NAM:-E> <ITEM.%-TYPE-DESC',(I Pr: 2:;.

(PACKING-SPECIFIER>

Sc)

b 7 1 ir,>a (NAtME> (1 PYvl- Y- E S C tl ?T1IO-
<TAB3LE-PRESET>

168 /ITEM (NAM"E> <IFEM-TYPE-DESCkIPFLJN>

<6 ORDINARY-TABLE-OPTIONS-LIST>
(ORDINARY-TABLE-O~fTLONS -LIST,
<ORDI NARY-TABLE-OPTIONS>

170 / ORDINARY-TABLE-OPTION,'S>

171 KORDI NARY-TABLE- OPTIO> KODNAYTAL-I'.-:
172 / DIRECTIVE>'
173 / NULL- ST1.11

174 (SPECIFIED-ENTRY-SPECIFIEK>
(WO RD S - PER -ENTR1Y > <S P E C FLIE D-I LE-SR
(TABLE-PRESET> C

175 < WORDS- PER-ENTr Y> (P Ft-Y> z
1 76 / WORDS-PER-EN4TiY> <ALLP~SKF

(SPECIFLED-TABLE-BO)D'>
177 / WORDS-PER-ENTRY> KPCFlDTA - i

1 7J~ <woRDS-PEe<-E'N7I.Y> 'il <1 2~> T ''
179 1w <T>
1810
181/
182

183 (SPECIFI ED-I7TE'1 -D W P 11
<IT.;-,-'TYE-DES'R ~o; ~

184 <(OATOCATE ION-SPCILK>

185 <STARTING-BIT> K~P1k
18.3

187 <S/\l ,TBE-OY SP E~i 1 E D-I?:-!> -)
183 !3I (SPE :i FLE> 1ki

OPT p J-

189 (PC LE-AL-TKDK
* ITEM <NAM*-E> <SPEC:I FL I FK-ECI91

<TABLE- PRES ET>
190 /ITEM <NAMEK> <SPECIFIED-ITEI-U-DES r\ PI1)

191 <SPECI F1 ED-TABLE-OPTIONS-LI1 SF>
< SPECIFlED-TAkBLE-OPTIOS-L'>>,
<SPECI FIED-TABLE-OPTIOJNS>

192 /<SPECIFL ED-TABLE-OPT IoN"S>

193 <SPECIFIED-TABLE-OPTIONS> (PC~E-AL-TK
D:-L>

194/ <DI KEL IKE>
195/<NL-T:

57

*196 <CON;STAN\T-DEC>
CONSTANT ITEM <NAMIE> <ITE''-TY PE- DES C e'I P Il 02
KFORMU LA>;

197 /CONSTANT TABLE <NAAE> <DiMENSION-LIST>
<TABLE-DESCRI PTION>

198 <BLO(CK- DEC>
BLOCK <NAM-E> <ALI.OCATION-SPECIFI t.rO
<BLOCK- BODY-PART>

199 /BLOCK <NAMEL,> <ALLOC, TlON- SPEC!FlI~
<BLOCK- TY PE-NAME) <BLOCK-PRESFT>

200 <BLOCK- BODY- PART> <NCLL-STIU'Y>
2W / <D.-VA-DEC>
2 02 /bEGi. <BLOCK-BODY-OPPl N-ISU

203 <BLOCK- BODY- OPT 1JNS -LIST> \'BLOCK-BODY-OU 1-
< z I ,)C K- Bo)y - 'O i m11 ,.

205 < B L 0C K-BODY -0P TIU 0DIADW
206 ,' OVL\' AY-9<
2 07 / <D tL) i i'

"US S , i

*209 <KALLO 0C AT I- N- S FI F L K >
210

*21 1 KTiPERFO 1
212/

215 <KNUL- P i\L'

217/ oKO:- z;-u

KFOR:IluLA>
219 /KEPArPRE-LSOTI
220 / F KFAULT- PRLS ET-SUL7"i -T-HLiAD_> <F-.*~>
221 / DEFAUT-PRLSE-SUBLISTU-Hb.9> N. P-xc)
222 / DEFAULT-PRES [If - SUL'LST -HK.\ >

<REP EAT ED- PRES ET-VALUF S-OP F

223 <DEFAULr-PRE-Slf'-SUBLISP-HEAU>L)
= PRESET-VALUEFS-OPTIONL>

22 4 /<DEFAULT- PRES E--SUBLi sT-R >
<PRESEF-%7ALl_'YS-OPTI UN>

58

225 KCOMIPOUN4D-PRESEY-'-SUB3LIS>
KCOM' POCND-PRES:T-Sl,'SLI.S -HEAiD> <FKFD:QLI'.'

226 / COMIPOU:-PRESEfr-SUBLK- -HEA:'D> KL-ES.
2 27 / COtPOUD-PREST-SUBLISP'-HEA;'D)

<REPEATED- PRESET-VALUE S-OF I ,'.'>

228 KCOIPUD-PRESEr-SUBLI-ST -HL-.kD>
<DEFAULT- PRES E'r- SLBLIST- HEAD>

22 <RESET-INDEX-SPECI F"iI~
229 /KESET-INDEX-SPECIVLI\i,,

230 /KC>PLDPRSI SI§H

231 / COMO-RESE I' - TLIT
KPRE5T-LNDX-SPLEI-.

233 (E TIDXSEFN-

234 /KES -NE-w~

235 <(P K ES F F- VI'SO

237

238~ ~ KRE E9P Ef f 0,I-A .T 0

239 <EP E II C' J ISUHi X>P~>

24 < KEPx AW D£-H <

* < TY P-N - <I T yi pYiN

*248 < ~ TTSET YPP-N--
*2T., K L2TY P,- ,

*251 <ITE %i--YPE-D!LC> TYPEK~"A -':LDSThHP

252 <TAKL E - TY P E- DE 'I'O K T2> < K11 -,~r

253 <TABLE-TYE-SPELFI~rl,>
(DIMENSION-LIST> <STKTCfRL-SPlC-i~Lt
KLIKL-OPTION> KENT.-Y- SPEi ',!:'r

254 /<DIM,,ENSioN-LIST> <sTrL'cTiuRE-spEci 171 trR
<E:;TRY-SPECI FiE0K

25 / DIMENSIO)N-LIST> KIE020>K ' PCF~
256 / DIMlENSION-LIS-T> KNS-PJS
257 01(DIENSION-LITST) <AL-YKNX

258 <LIKE-OPTION>):: LIKE P IT~-A

259 (SLOCK-TYPE-DEC> TYPE :A>I T

260 KTPNI-DEC> DS:TNKK-I-i.

261 <STA T-N;A'E-DEC-HEA',D> LA> >K

2 u2 <S (S,:1 i-X~z -

263 < D F :-DS> DE T- T <N.KWKDS-'::

264 < D -1F-?A7 < FR:I K'-DEL LN,- P~ZI~I 7 -

OPT r35':> (kI 7-1

2 65 KFOK_ll>D~ FIPLOi 1 ~ I) A >'

26' < F'~U KR! - D E F1 . A.

2567 (F9!>ILD",FI NE-PRjE -LS-.I.
: (<LTR'>

26 <' Fu R:1A-MD E FINiL,- PA- .rA SY_-.i, '..-

261) <LI -O IO'
2 7 /i L I STKXV

271 /LISTINY,,

2 7 <EX R ALDEC'S P

275 <DEP-SPEC> <SiMPLE-DtvF)-

2 76 / (COM1,lP 01 ,7D- D >

277 <SIMPLE-DEF> :=DEF D-SECUIK

278 <COMPOUND-DEF> DEF BEGIN D-PECRL:-I)

279 <DEF-SPEC-CRiUICE-LISP> <DEF-SPEC-CHUICE-LIS F?

280 / <EE-SPEC-CHOICE>

281 (DEF-SPEC-CHOICE> <NUIL- ST>2>'

282/<AA-E,
283 /<DEF- BLOCK-lIATAY0

60

284 < KS T:,- NA.-EH- D c

28 DE F-BLOCK- INSTANTIATi 00 :: BLOCK INSrA:,CE KNA:-L>;

287 (REF-SPEC> <SIMPLE-REF>
288 /(OPJDRF

289 <SIMPLE-REF> REF <KRUF-SPEC-CHiICtL

290 (COMPOUND-REF> REIF 13BUCiN RFSE-HI-LP m

291 <REF-SPE(S-CdilCE-LIST> KE-PCCiI'-IL

2 L)3 <(E F- SPEC- CH-1)CE-> K:BJLL-ST:1>i'

295 / SUB-DEl'>
/ <DIRECTIVE> <R;v-S PE -&i >

297 K3L~~~Du OVEXLAY <A: ()LY'TU-ADW)t, '.

298 <KA bOL LT -- A D 71) i'
'299 P:K((u'

300K0LLYEF-Si2

301 / <KOVE LAY -EXS l<U KOEKLYS 6

302 (OV E RAY - STERi-I

304 <OVE!RLAY-ELEMENT;f> (PC
305/K5AE
306/(VExY-YriSlL)

307 (SPAiCiR> W FRC.X

*308 KSUI3-DEC;> :<PROC-DEl>

*309 /<FUNCTIJN[-:-EC

*310 KSU3-DEF-L-IST> (SUB-DEF>
*311 /<U-E-If S~DE

*312 <SUB-DEE> <PRUC-DEE>
*313 / FUNCTLON-DEF>
*314 /<DIRECTLVE> <SU B-DEF>

*315 (PROC-DEC> <PROC-HEADING> <DEC>

*316 (PROC-DEE> <PROC-HEADING> ; COMP0U7ND-B0DY"

61

*317 / PROC-HEADLN%'.', zcST..

*318 (PROC-HEADING> PROC KNAAE>: <SU3-ATTRIBUTE>

<KFORM AL -PA RM KT R> - LI STF>

*319 (SUB-ATTRIBUTE>
*320 /REC
*321 /RENT

*322 <FUNCTION-DEC> (FUNCTION-HEADING"c; D(:

*323 (FUNCTION-DEF> (FUNCTION-HEADING>; CYPUDB:
*324 /<FUNCTION-HEADING;> (SK>

*-3 25 (FUNCTriON- HEAD ING> PROC (NAiL> <suB-ATrTi-US F:l)
<FO K>AL- PAPA-l',.T - L ISP>
< ITE A- T'iPE - DE SC,, P ri

*326 < FO RMAL- PARVAA E' R- LI SI>)

3 27 /(KORiLIPAA T-Li)
328 / <FOR IL-1O-PARAIET~r.-LIrSL>

330 (FOR -AL-IO-PARAAVEThRK-LI SF'>

331 < (NA:IE>-

*332 <INLINE-DEC> (NIE-E-LJ

*333 KINLINE-DEC-HLbAD> INLINL Ub..<
*334 /(NL~-~-b~) S

*335 (SUi3-NA--Z> PO-AL-kI
*3 3 < NA,",

*337 (STMT-LI1ST> (STA"T-LIST> (Pi
*338 / STAY-LIST> <(P'lLL,-ST,'iF
*33& -) / (NULL-ST:AT-> (~.L
*340 < STAYl>

*341 (STAIT> <BALANCED-STMT>
*342 /<UNBALANCED-STAIT>

*343 <BALANCE!D-STMT> (BALANCED>
*344 / DIRECTLVE>KBLN 1 -SIi

*345 (UNBALANCED-STA.lT> <UNBALANCE!),
*346 / DIRECTIVE> <(UN BALANCE -S TII>

*347 <UNBALANCED> (LABEL> <UNBALANCED>
*348 /<UNBALANCED-I F-ST:"l'>
*349 / UNB ALANCED-FOR-STAY> ,

62

*350 /<UNBALANCE J- HllLE- S l-,

*351 <BALANCED> <LABEL> (BALA2,CED>
*352 /<ASS IGNM4ENT- ST:-Lr?
*353 /<BALANCED- FOr,-ST11v'
*354 < BALANCE D-.-H1il E-ST ',>
*355 / BALANCE.D-IF-S>:T)
*356 / CASE-STMT>
*357 / PROC-CALL-ST'lT>
*358 / RETURN-ST11>)
*359 / GOTfO-STMT>
*360 / EXI'-T-sT>>
361 / STOP-STMT1>
362 / ABORT-STAYl>

*363 /BEGIN~ <STtr-_L Sr> (DIK~~ -' 1K'x.'- :

*364 (NULL-STMT)
*365 /BEGIN CPoiD-N

*366 <COMPOUND- END', Z',,D
*367/ LB>Kb':-

*368 <LABEI > KRJ-AE-A:

*369 (ASSIGNMENT-STA:T> < T. L I-LIS' < =~'. KRP:K

370 (TARGET-LIST> <TAKG~l1-'_ rI> , TAt K<
-1371 /T (rAR ,E>

*372 (TARGETr> \LHlS'>
*373 / KURCLTV-NA.

375 /(~-Y iAA>i-IK
37b </ KFt) TH L:,, K3AV i-.)

377 <U N BA LAN C K)- FO R- S T~l I>
: (=FOR-CLAUSE) (UNBALAl'Cl.) >

3785 / FOR-BY> <UNBALAN1CE D-Sr..Ki>
379 / FOR-THEN> (UNB'ALAN:CED-SM Fy.

380 (FOR-CLAUSE> (INIrlAL> (SAF->
381 / INITIAL> (WHILL-PriRASV S:>~

382 (FOR-BY>
:(= INITrIAL> (BY-PHRASE> SAY

383 /<INITIAL> (BY-PHRASE>(HL-HRS>(AE
384 /<INITIAL> (WHILE-PHRASE) <BY-PHRASE> (SAFI">

385 <(FOR -TH E'N>
(INITrIAL> (THEN-PHRKASE> (SAF:K)

386 / INIriAL> (THEN-PHRASE'> <('-HlLEF-PliMSE> (SAIFL)_
387 < INITIAL> (WHILE-PHRASE) (THEN-PHRASE> (SAV,."

388 (INITIAL> FOR <NAME> (XRS'N

389 /FOR <LTR> <EXPRESSION>'

390 (BY-PHRASE> :=BY <EXPRESSION>

391 (THEN-PHRASE> THEN <EXPRESSION>

392 (WHILE-PHRASE> WhILE BA h-FL>

*393 <BRANCH-FALSE> /(BIT-FOR,'tULA),

*394 <BALANCED-UH LE-ST"AT> <WHILE-CLA'$<1
< BA LA NC E 0-S T:,:

*395 <UNB3ALA-NCI.I-:D-WHI LE-ST',T> (<1,.'I> LAS

*c396 <WHilLE-C~ikUSE,? WqHILF KbtRA'1Ch-FAL '-K> >'

*397 (SAFE> ::
393 / SA Ft

*399 <BALANCED-!F-ST.%i'> <1-~S1\

*400 (UN13ALA'1CE!)-LF-ST.X'T> (>CL~SUf S'K.

*401 <1l-S: . :;-w

402 (IF-PREFIX> lGL s9K:;L-.2

*403 (IF-CLAUSE-.) IF (R&~~ :

*4 04 <CASE-S'>1'> (AS-OY CPPN-:L

*405 (CASE-BODY> (AECA~>~AEU'
*406 < (CA; I -Dy> <'A.'~'

*407 (CASE-CLAUSE> CAoE EP\SL)U

408 <CASE-CHOICE> <CASE-ALP> ,S1''/
4D9 /<CASE-ALP) <S'1'.-I L>P&

*41J <CASE-ALT> (<CASE-INDEX-CROKC'>)
*411 1(DEFAULI'

*412 (CASE-INDEX-O;ROUP>
:: (CASE-INDEX>

*413 / (CASE-INDEX-G1'ROUP>

*414 (CASE-INDEX> <~ EXPRESSION>
*415 / EXPR6ESSION-> <EXPRESSLO> ">

416 (PROC-CALL-STMT>
* INVOCATION>0 ABORT(PO-AENi>

*417 / INVOCATION>

64

*418 (INVOCATION> :< OUTPUT-LIST)
*419 /<INPUT-LISP))
*420 / PKOC- LABEL-AK

*421 <INPUT-LIST> (CALL,-PREFIX> KNU-AA
*422 / INPL'1-LISlT>,(1KiPR>

*423 (OUTPUT-LIST> <Ii4PUT-LiST) J Cl P~ P A KA>
*424 / cALl,-PREF:X> <OLJP§U PA
*425 / (OUTP<-LIST))

*426 <CALL-PREFIX) P0-AiL-x:->

*427 (INPUT-PAR2I (XP5>~

*42) KOUTPUT-PARA>D <LAS. >

*429 <RETURN- STAT)' R EYk:k

*430 (GOT0-ST%!T> 003 P'OiTO -~

*431 (ITS T) EI "1

432 <STOP-STAT)> S TU
433 /STO0P<F)

43-4 <A BO KT- ST) FABJ

-'435 (F0R:IlU!A> (FORM ULA) T-.KTE:-
*436 I FORM-UL.A>
*437 /+ < T ~>

*439 <' (TERI),,

440 <TEKC:> <TE'-> K X>
*44 1 /<TrR*M'> / FAL:Ford
*442 / <TERM> MO1D (AYx
*443 /<FAUFLDx>

* 444 (FACTUKo> (FACTOR)>
*445 /<PRI:MARlY>

*446 (PRI'ARKY> (INTEGER-LITEKAL)
*447 /<REAL-LITERAL)
*448 / <B I'TL ITErALK' >
*449 / CHAKACTEK-LIP~(L
*450 /<BOOLEAIN-LITEx..>
*451 /<POI:'TEtR-LiTLK.,,L.)
*452 /<iNAMlE-VAARLF
*453 /<LEMPTER?
*454 < <FUN G FLO0N -CA

455/ < IN TEG ER -. L C-iI P A t-A'-'lK
456 < <FLO AT I NG - iA l ,r--P.1%KAAL;

457 / FIXED-MACHINE-PARMET-1R>.
*458 /(<EXPRESSION>)
459 < CONVERSION> ((EXPRESSIO:>

*460 (BIT-FORMULA> (AND-FORMULA>
*461 / OR-FOPMU'LA>
*462 / XOK-FORAULA>
*463 / EQV-FORMULA>
*464 / BIT-PRIMARY>
*465 /NOT (BIT-PRIMARY>

*466 (BIT-PRIMARY> (RELATIONAL-EXPRESSL(L;>
*467 / FORMol'LA>

*468 (AND-FORMUtlLA> (BIT-PRIMvARY> AND (BIT- P i1rT

/ AND-FORMULA> AND B-PIXY

*470 (OR-FORMULA> (BIT-PRIMARY> OR <BE -R KiY
*471 / OR-FOKMULA> OR (I-~.:\

*47') (XOR-FORMU"lA> "BI -PRIARY> IXOrl' (Ril -Pl-.Kil
4 7 /3 (X0-F):iUhL.;) XJm<31-p-j

474 <EQV-FOR:UJlA> B.fP)IAR EQV IP-I..
475 / EQV-FJw<::'lA> E(', <:" 7-r-' ',A''

*476 (RELATIONIAL-EXPRE--SHIOLfN>,

*477 (EXPRESSION)> :: B<IT-FORMUl',A>

*478 <NAMRED-VARI ABLE> <SU6SURIKI?)
*479 < IN2L

480 / SUBSCKIPI) < (P J L;
481 / N,11il > < p I1'K:.'
482 < (P J1 DIPK>

*483 < L 'm> <LET i'_:
* 184 /A
*485 /B
*466/

*487 D
*488 /F
*489 /1
*490 /N
*491 /P
*492 /R
*493 S
*494 / T

*495 /UI *496 /V
*497/
49b (POLNTER> : NAME>

6

499 <. FORMULA>)

*500 (SUBSCRIPT> (PREFIX> (FORM-ULA>

*501 < SUBSCRIPT> , (FOKRMU'LA>

*502 <PREFIX> (NAMIE> (
503 /<POINTER>(

*504 (LHS> (NAM4ED-VARI ABLE>
505 / PSEL'D0-VARIABLE)

506 <PSEUDO-VARIABLHE,
BIT < TARGET> < FORMULA>,(F:4LA)

507 /BYTE (TARGET? < FORMULA> < FOrMUl LA>)
SO8 / REP ((LNA:ED-V.\RIA3L >)

*509 (FUNCTION-CALL> (INVOCATION>
510 /(~~I~CF~Tu-AL

511 (INFRINSIC-FUNCTiON-CALL> < LOGC- FG'fL UN >
512 < (N EX' T- F U N Cr L J:
51 3 / B I I'- FJ N C I'L)
514 < (BY'E- FG:NC i'Lo::>
515 < (S HI FLI- FjNU I1I.,),

517 < AS - F UNL 0i

518 / (S I Z F C ILo
519 / (BO0U D S- FJ"NCI L')N
520 /(~mNF:r~

521 / (S<STAT:JS-T.NVELR1S:-FNj

522 (LOC-FUNCfIION, LOG (KNAML)-VARIA3lV>

523 (NX-UCLJ2 NX FORM ULA> ,Fj LA':

524 (bIT-FUNC'fLJ&>
:=BIT (<EXPRuL-;SLON> , F,:-;ZLA> ,(uY

525 (BYTE-FUlNCTrIj->
=BYTK, ((FOR;I1LA> , (FOK:1GJLA> , <FoGtUAl-l,.)

526 (SHIFE-FUNCTIO0N>
(SHIFI-DIRG-CTION> (<EXPRESSION> ,(~'V.\

527 <SHIFT-DIRECTIO:'> SHIFEL
528 /SHIFIR

529 (ABS-FUNCTION> ABS (FORMULA>)

530 (SIGN-FUNMfON? SGN (FOR:,4ULLA)
531 (SIZE-FUNCTILON> (SIZE-TYPE> (FORMU'-lL>)
532 / SIZE-TYPE> (TYPE-NX'ME?

67

533 (SILE-TYPE> BITSLLu.
534 /BYTESIZE
535 /WORDSIZE

536 (BOUNDS-FUNCTION>
: = (WHICH-BOUND> ((NAME> , FUR':LA"

537 (WHICH-BOUND> LBOUN'D
538 IUBOIUNID

539 <NWDSEN-FUNCTIMN> NWDSEN (NXI:!>)
540 /NWDSEN < KFhbLE- T P-x9

541 (STATUS-INVERSE- FUNCTIO1>
:= FIRST (STFATUS-I .VERsE-ARGU>,:u>-*:',

542 /LAST(<sTS-vES-RUb)

543 <STATUS- INVERSE-ARGULI:-NT') <FK:'IR:L!A
544 /K ~:Tp-x,..

545 KCONVISIoN> (*Kh-TP-S>I
546 /KY~N~'
547 /REP
548
549 /C:
550 /F
551 /P
552 /S
553/

554 (NAME-,-LIST>

556 <RES ERVED-d- 0fD> A B0 l
557 /ABS
558 /A:, D
559 / B'E (; T
560 /Bir
561 /BITS I zE
562 /BLOCK
563 /BY
564 /BYTE
565 /BYTESIZ,-
566 / ASt:
567 /COMPOOL
568 / CN STAN\"' r
569 /DEF
570 /DEF-^AULT
571 /DEFI NE
572 E ELS E
573 /E14D
574 /E(QV
575 /FA L1,F Hr
576 / FAL-;E

577 / FIRST
578 / FOR
579 / GOTO
580 1 F
581 / INLINE
582 / INSTANCE
583 / ITEM
584 / LABEL
585 / LAST
586 / LBOUND
587 / LIKE
588 / LOC
589 / MOD
590 / NEXT
591 / NOT
592 / NULL
593 / NWDSE:l
594 / OR
595 / OVERLAY
596 / PARALLEl.
597 / POS
598 / PROC
599 / PROGRA.:
600 / R:C
601 / REF
60? / REN
603 / REP
604 / RE r U t-,:
605 / SGN
606 / Si IFhL
607 / SHIFiK
608 / START
609 / STATIC
610 / STATUS
611 / STOP
612 / TA bLE
613 / TE,:-
614 / THEN
615 / TRUl
616 / UBOlND
617 / WHII
618 / WORDSi
619 / XOK

*620 <RELATIONAL-OPERATOR> . =
*621 / 0
*622 <
*623 />
*624 / <=
*625 / >=

626 <BIT-LIrEKAL> : <INTEGEK-LITER,\L> B
<CHARACrEK-LITEK,,:.>

69

*627 (BOOLEAN-LITERAL>

*628 /FALSE

*62-9 (POINTER-LITERAL> NULL

630 (DIRECTIVE> (COMPOOL-DIRECTIVE>
631 / COPY-DIRECTIVE>
632 / SKIP-DIRECTIVE>
633 / BEGIN-DIRECTIVE>
634 / END-DIRECTIVE>
635 / LINKAGE-DIRECTIVE>
636 / TRACE-DIRECTIVE>
637 / INTERFE RE 1CE- DIRKECTI VE>
638 < RE DUC1 SLE-D TRETV>

639 / (NULIST-DIRECTIVL>
640 / LIST-DIRECTLVE>
641 / EJECr- DIRECT LVE>
642 / BASE-DIRECTLVE>
643 / ISBASE-DIRECT1Vb-_>
644 ,/ DROP-DIRECTLVE>
645 / LEFTR I GHT- DIR <ti]'r1 VL.>
646 /<REAR RANGE- DI RECr LV i
647 /<IN ITLAL IZE-DI. " 'F V<
640'8 / OR D EiR-D IRECT IE

649 (COMP0OL-DIRECTIVE>
::= I COMPOOL (CONIPOOL-DIRIEC 1'

650 (COMPOOL-DI RECTIVE- LIS Y>

651 CMULDELR-ZL<

653 /()

655 (COMPJOOL- DEC LAKED-NAMZL >
(COMPUOL- DEC LARED-N,':1-"">

656 <COMPOOL-DECLARED- >LA:>,

657 (COMP00OL- DECLARE D-l;.VIE> (NA"E>
658 /<TY PE_ NA:1Kl>-659 / PKOC-LABELL-;A-..
660 / <TYPE-:"A'; >
661/(PO-AH-i1)
662 / <NA,lI)'

663 (COMPOOL-FILE-NAMlE> (HRXI-LI FVR;\i

664 (COPY- DIRECTIVE> ICUPY KRRC-I~R;

665 (SKIP-DIRECTIVE> ISKTP

666 /!SKI? tT

7 U

667 <BEGIN-DIRECTIVE> !KI
668 /IBEGiN (LIE>

669 (END-DIRECTIVE> :: END

670 (LINKAGE-DIRECTIVE> :: LINKAGH (SYMBOL01-LIST)

671 (TRACE-DIRECTIVE>
: ITRACE ((FOR,4ULA>) NE-IT

672 / MTACE (NA:IE-LIST>

673 <INTERFERENCE-DIRECTIVE>
: IINTERFEKENCE KINTERFEENCV-CO~lmOL'

674 (INTERFERENqCE-CONTt
: = NAME> (NOAM'E>

675 / INTERFERENCE-CONTROL> ,(XK

676 (REDUCIbLE_-DIRECTIVE> !RDi LK

677 (NOLIsT-DIREcTILVE> :: NJLIS

678 (LIST-DIRECELVE> !ISI 1

679 (E]ECU1'-DIREUCTIVE> = EJEfl'

680 <(BAS E- Di RECTL VE> = AEK~~>K Y;~-L ~~'

681 <IS BAS E- DI R EC"T LVE, !IS BAS" < NA,1H > <IN 'EK; t"- LI Tr

682 < DKO P- D I R E CTLVE> !DKOP KTE6hE -1IP.1

683 LEVGiTIEt'v) !Eh

684 KREArERANGE-DINELClIVE>

685 <INI'ELALIZE-DIRLC'IIVL> !IX1 I\LIIi

686 (OKDEeR-DIEECFLVL? !OIDr

71

Appenuix

System Maintenance Guide

This appendix describes the structure and or-,anizaci.

of JATS. The purpose of this appendix is t,) provide !i,

necessary information to the maintenance pro ,-,za--mer tall
modi fication of the s, istr. The over l v e:-L1 -

briefly described followed" by a systzem, stCruIc tu-re Choe,iL

description of each subroutine, and a litor sxs' -

statements.

J ATS us es t.he LR par s er -gen1e rAto,)r S VS L 2- C 1s r I

parse tree of the input J73 source pro r . sp

is then translated so that it reprezsents ill e.i1 eatl

source progrdrnI. Finia 11,, t; ie t ermina ii :s re

using, a prettyprint for-mat. The structo.re oI JAi

therefore b e g roup ed Ito thIIr ee fuTIol o0dal-

(1) parser module, (2) tAl~

(3) prettyprint odle

Tne parser -nodule? 'as s -i 'ed rf L. te U~~R-

generator system and the par sing, a 1lrthas v1c I - t'i'*fi

directly f rom LR. Appendix k% conita-ins a brief description

of LR and the data struc tures tlatL s ,1))0 rt L oe p)a rs in

algoritftms. There i s one modificatiori to the parsihi.

routines to accommodate the J73 grammar. During the parsi>i

loop, a check is made ini certain sttsof the parser to s&-*

a flag which indicates whetlie- tule parse-r is priC'jCe Ssl1

7-2

executable statemen ts o r oC a ra'lns i'.iS

within the scanner to return th e correct tok e:, d-l-r

scanning of Knane >s. The miajor additionIs to the parser-

the scanner anid Chu semari:. c processor. Th e s ca nner,, re.

the tokens of the inpUT- stream to the parser. ~t c on SL~

of a number of subroutines whicha will be dis:'asesj 1-,z

The semantic processor constructs the parse tree ur.v

reduc Cion- processe2s The sub rou i in e s I i' S 11))0 7 L.L

semant~ic processor 4iL 'o discussed later. On L --'.1 ar:- t-.

of iner e st i s thei u se o f a ''h eap' jor Udrn:i tc >

the niodes anid elemects of tic U-rcc.

Th e tr -, i s -i mo,, jl e I rocesses tep UrL

thie lan Iu- -Uie product L'on nu- >er s tm ta, 4 4 ' . 1 '1

e -ICh1 [I inern 1 no ie . $U ~fpdu' 9 r~

process is ft~i reclamation7 and cI lcto of Si~ 5)2-.

A list of avail a)1 e ht,,,, space ismina .. r Iin'

S5 nices tocetner . od of the, tree r de Ic

a Is m ac ,. o e ~ ~ for real locat- Lmth n ir> -

of avil'able nodies isin~i an vr-ii d:i t:

The pre tt',priinn moduli Ie slj out4t t-n -1) 1 uL.

t e rinalI nodes, o f the parse tree and uses ti w>

c ontLroI th e f o ra rLi -i o f th1)e r es uILi np Ad a p ro c

A syst-e't structure chart- is sp)rtiad a r)s,, fi Jure'i re

13, and! 14. A brief descriptioni of each sal-brout iiet fo)L;

the1, s.s t er s Lr-u c U -ir e ch a rtLS. Al in cr I -du

appendix, i s t ai I e IV Wh i Ch des C ib S C>. I-> C)l C s>-I,),

7.3

errors and r-he changes req}uireJ E ur~ :ec~

74

>4_ _ _ __ _ _ _ _

,45

76

1' 4

-o

-7;

ADW14ODE. Local to procedure TiANSL-A'rh-. U s es ~

the translation process t o create a new' t er:-)i n al1

consisting of the terminal symbol TEW>1'CODE, it adds tne

element t o the curreint node. The neween is inser1,c,:.

immediately after the element pointed to b-,, PTi. da,-

the gLlobal variable NEXT'iNODE.

ChANGE'NODE. Local tD procedurt2 TrkASLA'D-1. Ci

the terminal symbol at the node identlifici by' tn Ac:2 L t

pointed to by PTk< to TER'.'CODE.

ChAR' STRIN k. Local tD procedoire. SJV:*.

<character-li--eral>s duriiwj tAe pa rsiiij prjce.-> . C ,n<

a new'7 elementL of tie L rio ;i no.n idc iE

<character-literal>. Upa~ P ~ dl~~ a

1NEXT'STRING and S T R I NG(EX f' Sfr E rer 1i 6

number of <character-literal> in SCM,''IJK.

CHAR' VAi.. LocalI to) procdiar.- th:~ uu.cI V

durin. the pro)cess of sca,1nin 51 nC.;> tri LIt 2

of the di,;it Cd.

COM:4E:,N . Local to procedur,: SC A. Us~ S~ (2 J SC.

commenL.

DEC'H-EAD. Global b oIle -n f un Ction)T1. U s e d ,lr i L

parsin6 process. Retarns thie va 2. c T*,(UE if theu toke-),

IN'TOKEN, is the start of a declarati-)n. If IN'TOKEL is

<name>, theni thle vlobal C u r 0 T: I i s chancgeA t,

<proc-label-name>.

78

DELETE'NODE. Local to procedurc ThANSLA>;. ,

during translation to delete the node element im:ei;at I

following the element identified 1,y PTr and c,-.'.1

DELETE'SUBTREE with the node number at the deleted ele: :-.

Updates the global variable FREE'PIK.

DELETE'SUBTREE. Local to procedure Dz!LZV)i.. v,

is a recursive procedure that deletes all nodes a',,i ele.c::

from the parse tree as a result of deLeti, the n,i

NODE'NUMBER. Updates the global variah)les :1K . .

FREE' Plt.

DIGIf. Local t,) procedure SJ:.. "c 1 1

which returns t'ie value T?,Ui if CH is u

DIRECTLVE. Local to proceduri Sg.

directives. Returns the proper token nibc- in S,;fI'

DO' REDUCT. Glo..a! procedur-. Used d: t1 1 1 P

process to perf r' - reduct i. b,;eJ L' 1,,

productiorn PROD'NU:. Calls '- a:d) i ' 1 C 2

intor:-at io onto the pars in s I tCks . , dC P , s

varidbles STACK' PEK and CUR'SEA:.

DO'TRA2. Global procedure. Used during th e , -i.,

process to perfurn a transition to NE'-'SI'AT . StF;cVz . S

current infor~iatioi onto the parsing stacks and c;,IIs S

for a new CUR'TOKEN. Updates the global variables CU,'SI, 7.

and CUK'TOKEN.

79

DOUBLE'MARK. Local to procedurt2 LJ\.Cn :

currenL token being scanned might be a double chari,:--

symbol, such as K>. Returns the correct token numbl:u

SCAN'TOK for either case.

ERROR. Glotal procedure. U'se d dur irng th-1e par.si.

process to output- informatioq reg ardin, the curreri S-:

of the parser when a syntax error has been detcz~i. K -

the global variable ERR' FLACG to thiu vaIm <K;cJ '>

the parser and translator Sys-t2:-.

F1 ND' tEDUCT. Global prOLedor-,. 'I 1:c)'1~Jdo

te parsing, process t.o f Lni tlit pro, L2 t2J J L)'I Cc

based u~on CSTA'Fr. and CTOKE:.',

FINUTUK. Locil t, proceduru 1:~ LSui J

scannin6 of tervinl sym-,bols. Usv' TOK' sy-:W-. a 2

ma t ch the curreiit sym~bol wit'i trwLirmm S'.o 1

if a match is found thle Val- je, 0fL-~)ZlfJ.

ret irnud as RETI"FVALLL.

FIN D' T kAN . Glob, al proceduru,. i-i nuseddol i

parsing process to find t-'ie proper trarisi tioribsc

CSTATE and CTUKEN.

GET'CHAR,. Local to procedure SC AN'. 11 I'rs t Ik T~ I.

character of the input stream as CH, aid echochucks t>

input line images. Sets EOF'FLA; an.1 cleirs NEXT'CHA; .

INIrEAL. Global procedure.lntaiesyrlu

variables and data structures.

LOOKUP. Global procedure. Uses the global variahiL

SYMBOL to find the symbol table entry for the <name> that i

contained in SYMBOL with a length of SYM'LENGrR, a glo

variable. If an entry is found, EI'NT<Y'?1K contiins t-7c

pointer value of the entry and FOUND is T.tUE. It all et

is not found, the symbol is entered in tne s?':,TboI thle a:

ENTRY'PTR contains the pointer value of t he n." eitr' a ,

FOUND is FALSE. If a new entry is ma!e ic glo 1),i vari ,,K

NEXT'SYMBOL is updated.

MAR.,K. Local t-) procedure. SAo. BDO-e:in 1 auctiC' ,,

determine if the curreat character o, t,, in.i str,:2

mark, or seperator. Re turns TKI is tt chari S r -- i

mark.

MOVE'_P1K. Local t procedurtf TASh,\:. s, d -I

traislation to mov the element p)ilntr)t ia no,, P i-,

nu-ber of positions siecified by CQJ .

NAME VREORD. Local t.) proeirc s,;.

<name>s aid reserved words. OTI: ChA (2S 1 " u,

scanned, if FINDTOK returns a value n then is i ..

Builds the global variable SY>:S0L and SYX' Lr hfti. ro' ar

the correct token number as ScAm'"rOK. May reset th,

variable STMT'SCAN'FLAG.

NEWP. Global procedure. Func t i, ri %h i ch returs I

next available heap space pointer adIrvs s tr t .

81

structure of the 6iven SIZE. Updates tnie global ri:

FREE'PTR or NEXT'HEAP as necessary.

NUMBER. Local to procedure SCAN. Used to scan numbe.r>

and returns the proper token number as SCAN'TUK a:-,"

constructs a node that contains the value of the appropriarce

literal.

PRETTY'PtRINT. Local to procedure PR1:1'%ADA. Used t-

output the terminal symbol contained in the ter ,:iniI nl,)

K PRINT'NODE.

PRI~rADA. Global procedure. Recur. i.'eL eW

which traverses the sabtLrees of NODE' NJ':-1. and, cai1'.i

PRETTY' PRINT when i ,?r-ninal node is reaichcd.A ij

warnings ,:hat certain sctionis of c-de have no h (2 f I'1I

trdiislated . Sets an71d r e seuts the 'la -r:<

LAST TRA>' FLAL;.

PRi I NODE~. Gbora,-l procedur. iilt procuduire C

outi)uts thle conltenlt.s of the node UE

P RINT' 6FRK]NG S GloDail procedure. I Lt [) rJcdi

that outputs the <character-literal>s th<-. 1iV beeu)-ti J

PRINT' SYM"TAB. Global procedure. it: r)C eu

that outpats the contents of tl sI bl i

PRINT'TREE. Global p)rocedur-e. Recursive procedir-,:

thlat traverses the parse tree a-nd cal is PK.' F' NUDE t-,) out ,It-

the entire parse tree.

S CAN. Global ?rocedure. S ca ns thie in ut a i i-. n

the token numbers as SCAN'TOK. Creates a newtria .

each time it is called and updates the globalvr>

NEXT' NOL)E.

S E.,A!T! C . Global procedure. Use,] du r ing th e pa rs

process t o construct a new nude baseJ on thie lanj ,

productioni PROD'INU.". Also enters the SY:' CLASS V 3luJe(

the symbol1 table and updates thI-e g;Iolal %ariales P,')

NEXT'NOUE, and NEXJTREE'Prk.

SWAP' NODES . Local -.,- procedure: Thd;APa (,i ia

the translation projcess to- s%,Lup the1 'L.17ri> lc-<

i mn e diat el1y follow the t cct cn ~b1

move-3 to point tO tile ne.I' c Lor' -t fl!ri

that was initially poiintu, L, a nPTA

TKUNSLAT"PI LOc C' t 1)roce:L-dur 17 AL. a

tr,-tIslat- 1)q pricess at e ichi floeT~~i 9.

ThAN ; 'FLAG for each et.: isrn 1to ', c

nodes and e'lemn

TRKAN'T k E. Glslprocudurv. kk2c u 4- 7 pr cekz

to traverse the parse tree during, translatioll.

Table 1%'

System-, Errors

Error
Number Cause/Required Chan es

1 Parsin8 stack overflo,..'

Increase the value of >1AXK'STAC. 4
2 SYM','STURE'TAB overflow

Increase the value off MXS Y.Su' S F4iL

3 HEAP ove:f'lov;
Increase the value of MX~V\

/4 TREE overflo .,
Increase th~e valoe- of 1'

5 S T-, C 0\ oe f I o;
Inicretase :he Val I(, of i2'TK:

6 STING,'46sru-,; ox'uri.,)

lncrt: ISLI L It V

Appendix D

JATS User Guide

The purpose of this appendix is to provide so,

guidance for JATS users. The system itself is very eas:,

use; however, there are several limitations tha toe

must adhere to for JATS to work properly. As shovrn in t

I, there are severil elements of J73 that hay2 ,,i,:,

definitions.

One other area that the user must i)17:- - o1-

translation is th e identifiers or Kna:-o>s o , -

program. As JATS is currently impleme: <, < " ti ,

to be translated must not be Ad _ rtservei .: ris. To ILI

limitation with respect t,) <narM s is tne, us" ,

quote within the identifiers. The use ot tI, sihge - '

must conform to the riles of the use the- onderscarv rL!

Ada. T1 4I reqj uires t a the sing le c uoot h :ceJ e,- d

foLlowed by eiter a dijc ,r lette ,r ['W I L' 1

cannot end the <na > Also, the us. V t c,

not allowed since it does not tr cnsI, e to an.y e '

element of ida. These limitations can be reose ,,

is modified to become an interactive syste t .,

user to rename an identifier when necessrv.

With these limi tations taken care of, the J7 prou,.-

can be translated with JATS. On tlie AFKAL/AA DecS,%ste<-]

JATS can be run with the following comand:

85

.RUN JATS[5600,11]
*<file name>. extensi'oi

JATS will respond with an asteris- as a pron p for tL'c "

name at which time the user shouild rasord '' vli .

with an exter sion of J73.

JATS will create two out>:1 fike : (1) J

(2) <file name>.ADA. JATS.LST wi cTIi.

input program and any nformation me-ii a t o i

generated. The second file is the :r -,ms~ ; ,.

program and will h ave 1Jm2 sn te n a: i

of ADA. This file wi IL 202Ll w :n2- 4r

sections of code t t .'cr- not trIilsIa t. . 't'.<'

will be bracketed by '-th fo'.!'.>:: m,.,.

----- ------------- ~--- -------------------------

-- THE CODU BET4EEN f-l B _
.-. ' I --

-! BkACKE :AY Nui" bT " ,

- - THE CODE BETWEEN 'Tis BIACKEI AD) Ti ,,-
BRACKET :KAY NOT BE FULLY T"Sr '-

JATS has been designed t: pr, ct2-s 1,r3 pr),):r -,.- -

does have some limitatiwns u'm si.,e. I a St I Je C Q;)

of a JATS system error appe,.rs at ti t,-I.(,.

running, then one of tie size li ittions has been e

and JATS will nave to be modified and recompiled. If t:,

occurs, notify the maintenance programme:-.

An example J73 program and its transl: teJ version

included in Appendix E.

A ID-A10O 881 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/G 9/2
JOVIAL (J173) TO ADA TRANSLATOR SYSTEM.(U)
DEC 80 R L BROZOVIC

UNCLASSIFIE AFIT/GCS/EE/BODS5 NL

22flflf7-l1

Appendix E

Example Programs

J73 Version

START PROGRAM TSTPGM;
BEGIN

ITEM TEST'NAME C 3;
ITEM TEST'FLAG B 1;
ITEM TEST'CHAR C;
ITEM TEST'NU14BER U 3;
ITEM TEST'NUM S;

HERE:
TEST'NUMBER = 3;
CASE TEST'NUMBER;

BEGIN
(DEFAULT) : TEST'FLAG = FALSE;
(1) : TEST'FLAG = TRUE;
(2:3,5) : TESV'FLAG = TRUE;

END
WHILE TEST'NUMBER = 3;

TESTPROC;;
IF TEST'NUMBER 5;

GOTO HERE;

PROC TESTPROC;
IF TEST'FLAG;

BEGIN
TEST'NAAE 'ABC';
TEST'NUMBER = 5;

END
END
TERM

88

Ada Version

PROCEDURE TSTPGM IS

TEST NAME: STRING (1.. 3);
TEST FLAG

----------------------------- WARNING---------------------------

-- THE CODE BETWEEN THIS BRACKET AND THE FOLLOWING --

- - BRACKET MAY NOT BE FULLY TRANSLATED --

B 1

-- THE CODE BETWEEN THIS BRACKET AND THE PREVIOUS --

- - BRACKET MAY NOT BE FULLY TRANSLATED --

-------------------------- WARNING---------------------------

TESTCHAR : STRING (1 .. 1)
TEST-NUMBER : INTEGER RANGE0 .. 2 **(3)
TEST NUM : INTEGER ,
PROCEDURE TESTPROC IS

BEGIN
IF TESTFLAG THEN

TEST NAME := "ABC"
TESTNUMBER := 5

END IF
END

BEGIN
<< HERE >> TEST NUMBER : 3
CASE TEST NUMBER IS

WHEN OTHERS => TEST FLAG := FALSE
WHEN 1 => TEST FLAG := TRUE
WHEN 2 .. 31 5 => TES'rFLAG TRUE

END CASE
WHILE TESTNUMBER = 3 LOOP

TESTPROC
END LOOP
NULL ;
IF TEST NUMBER = 5 THEN

GOTO HERE
END IF

END

89

Vita

Richard L. Brozovic was born into an Air Force family

on 26 September 1953 in Anchorage, Alaska. He graduate,!

from Thomas Jefferson High School of San Antonio, Texas i-

May 1972 and received a Bachelor of Science Decree ii

Computer Science from the United States Air Force Acade-n,

Colorado Springs, Colorado on 2 June 1976. He was tlien

assigned as the Data Automation Chief at Laughlin M; ,

Texas. In June 1979 he entered the School of Eniineeri:i_,

Air Force Institute of Technolojy to pursue a 6radu--.,o

degree in computer systems.

Permanent address: 3903 Maxine Dr4i':e
San Antonio, Texas

79228

90

UMtLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE (WIten Data Entered) ___________________

.ICTLLIN O(and NAMEtle AN5ADRS IrP REP EOR ATE RIDCOERI

7. rightPattro AF2 CO453NMBER OR PANTS BE

1. MONRORING ORANYAI NAME N ADDRESS if0en PROGCnrI~n fir)ISS RITM CLASS. PRf Z r.,s ep -

WrightDECLASSsoICATION TI 43433I

I1. DISTRBUTIONG STATEME ANf this ES R2pPORTtAT

Aproved fteor pulic ' r0lase 4 isribtio 13nNMBE OFAGE

17. DISTRIBUTION STATEMENT (of theisRptorterdil 0 fdifrn rn eot

I1. SUPPLEMENTARY NOTES f I\ 7Y

Lync10t JUN 1~
Director of Infor-mationi

12. KEY WORDS (Continue on reverse side if necessar) and identity- by block number)

Language Translation
Grammnars
Computer Programs
Programminlg Languages

20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

In recent years the Air Force has developed a standlard progra--viin3 lanju31C,
J73, for use in embedded computer systems. No.a thiat the Air Force !ias a
considerable investment in systems that arc currently being developei.ii2 7
the Department of Defense has selected a high order programming larigia2, 10
that will beco',e the standard for prolram-iinj "eJeied co-iputer syst?--s
throughout the Dapartmerit of Defense. 11so unde2r d2velopr :nt is t12', :!finition
of a support environment for Ada. Jne of tie tools of this support environ-'ent

DD 1jN31473 EDITION OF I NOV 65IS OBSOLETE J'O L 7IF7

SECjRITY CLASSIFICATION OF THIS PAGE WI~e,, '*?a Fnotere'

11"11 A.SYTFU7
SECURITY CLASSIFICATION OF THIS PAE(Wh7wi Date Entered)

23. Abstract(continued)

should be a translator that will produce Ada source programs fro-. J73 s:jr:c
pro grams.

The subject of tis research project was the design and developmcnt of a
translation system. The resulting system accepts J73 programs and produces
equivalent Ada programs to the extent possible while identifying segments of
J73 code that were not translated. This projct mado use of language parsini
techniques and various data structures to support the translation process.
Several problem areas are identified with possible solutions. The translator
system should be a useful tool in the transition from J73 to ".Ja.

U,%LASSI F I:
SECURITY CLASSIFICATIO F T-11 PAG.E'Whem Dol Fnre*v'

